Gooey Seeds

Some seeds can get pretty sticky when water gets involved. Anyone that has ever tried to grow a Chia pet or put chia seeds into water will know what I mean. The seeds of chia (Salvia hispanica) are but one example of seeds that turn gooey with water. The question is, why do they do this? What role does sticky mucilage play in the reproductive cycle of plants around the globe?

It turns out that seed mucilage is an extremely useful trait for many plants. For starters, it can aid in dispersal of seeds. For some plants this simply means being sticky enough to attach to an animal that brushes up against ripe seeds. Mucilage can get stuck on everything from fur to feathers, and even scales. This is yet another form of seed dispersal known as epizoochory. Amazingly, mucilage has shown to be an effective trait for aiding in wind dispersal as well. Such is the case for a small mustard called Alyssum minus. This may seem counterintuitive as one would think that mucilage would weigh a seed down, not send it aloft. In this example, the mucilage forms a tiny wing that surrounds the seed after it has dried out. This wing made out of dried, papery mucilage significantly increased seed dispersal distances on windy days.

Chia seeds in water swell with mucilage, making them look more like frog eggs than seeds.

Chia seeds in water swell with mucilage, making them look more like frog eggs than seeds.

Following dispersal, the role of seed mucilage becomes even more important. Just as it can help seeds stick to potential seed dispersers, the mucilage can also help the seeds stick to the ground. This is especially useful for plants growing in sandy soils that move around a lot easier than more mesic soils. By sticking to the substrate, the mucilage helps the seed maintain good soil to seed contact, which is essential for successful germination. Without it, seeds would easily blow around and never rest in a place long enough to establish.

Adhering the soil also aids in water uptake for the seed. This is a prerequisite for any seed to successfully germinate. However, simply acting like a conduit for water to move from soil to seed isn’t the only advantage the mucilage provides. By swelling up with water, the mucilage acts as a tiny water reservoir, which buffers the seed from potential water stress. Again, this is especially useful for plants growing in xeric habitats. By keeping water around the seed longer than it would be if the seed was directly exposed to the environment, the mucilage speeds up germination and increases the chances of success for the resulting seedling.

Finally, seed mucilage can also protect seeds from predators. Seeds are tiny packets of concentrated nutrients and many animals don’t hesitate to gobble them up. By covering their seeds in sticky mucilage, plants are able to deter at least some potential seed predators like ants from moving and eating their seeds. Also, aside from gumming up the mouths of seed predators, the fact that the seeds stick to the substrate makes them difficult to move. With any luck, seed predators will tire of the chore and move on to easier meals.

Now if we think back to those Chia Pets, we can see why chia seeds are able to germinate on wet ceramic. Their mucilaginous coating not only enables them to adhear to the surface of the structure, it protects them from drying out by holding onto water. It kind of makes you look at those goofy gifts as a subtle way of displaying an interesting evolutionary mechanism in action. 

Photo Credit: [1]  [2]

Further Reading: [1] [2] [3] [4] [5]

How a Tropical Conifer May Hold the Key to Kākāpō Recovery

8528623525_b24a75f47f_o.jpg

The plight of the kākāpō is a tragedy. Once the third most common bird in New Zealand, this large, flightless parrot has seen its numbers reduced to less than 150. In fact, for a time, it was even thought to be extinct. Today, serious effort has been put forth to try and recover this species from the brink of extinction. It has long been recognized that kākāpō breeding efforts are conspicuously tied to the phenology of certain trees but recent research suggests one in particular may hold the key to survival of the species.

The kākāpō shares its island homes (saving the kākāpō involved moving birds to rat-free islands) with a handful of tropical conifers from the families Podocarpaceae and Araucariaceae. Of these tropical conifers, one species is of particular interest to those concerned with kākāpō breeding - the rimu. Known to science as Dacrydium cupressinum, this evergreen tree represents one of the most important food sources for breeding kākāpō. Before we get to that, however, it is worth getting to know the rimu a bit better.

Rimu-Waitakere.jpg

Rimu are remarkable, albeit slow-growing trees. They are endemic to New Zealand where they make up a considerable portion of the forest canopy. Like many slow-growing species, rimu can live for quite a long time. Before commercial logging moved in, trees of 800 to 900 years of age were not unheard of. Also, they can reach immense sizes. Historical accounts speak of trees that reached 200 ft. (61 m) in height. Today you are more likely to encounter trees in the 60 to 100 ft. (20 to 35 m) range.

The rimu is a dioecious tree, meaning individuals are either male or female. Rimu rely on wind for pollination and female cones can take upwards of 15 months to fully mature following pollination. The rimu is yet another one of those conifers that has converged on fruit-like structures for seed dispersal. As the female cones mature, the scales gradually begin to swell and turn red. Once fully ripened, the fleshy red “fruit” displays one or two black seeds at the tip. Its these “fruits” that have kākāpō researchers so excited.

Rimu__Fruit__Dacrydium_cupressinum-9.JPG

As mentioned, it is a common observation that kākāpō only tend to breed when trees like the rimu experience reproductive booms. The “fruits” and seeds they produce are an important component of the diets of not only female kākāpō but their developing chicks as well. Because kākāpō are critically endangered, captive breeding is one of the main ways in which conservationists are supplementing numbers in the wild. The problem with breeding kakapo in captivity is that supplemental food doesn’t seem to bring them into proper breeding condition. This is where the rimu “fruits” come in.

Breeding birds desperately need calcium and vitamin D for proper egg production. As such, they seek out diets high in these nutrients. When researchers took a closer look at the “fruits” of the rimu, the kākāpō’s reliance on these trees made a whole lot more sense. It turns out, those fleshy scales surrounding rimu seeds are exceptionally high in not only calcium, but various forms of vitamin D once thought to be produced by animals alone. The nutritional quality of these “fruits” provides a wonderful explanation for why kākāpō reproduction seems to be tied to rimu reproduction. Females can gorge themselves on the “fruits,” which brings them into breeding condition. They also go on to feed these “fruits” to their developing chicks. For a slow growing, flightless parrot, it seems that it only makes sense to breed when food is this food source is abundant.

8529691516_9e20608bfa_o.jpg

Though far from a smoking gun, researchers believe that the rimu is the missing piece of the puzzle in captive kākāpō breeding. If these “fruits” really are the trigger needed to bring female kākāpō into good shape for breeding and raising chicks, this may make breeding kākāpō in captivity that much easier. Captive breeding is the key to the long term survival of these odd yet charismatic, flightless parrots. By ensuring the production and survival of future generations of kākāpō, conservationists may be able to turn this tragedy into a real success story. What’s more, this research underscores the importance of understanding the ecology of the organisms we are desperately trying to save.

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2]

Gymnosperms and Fleshy "Fruits"

Fleshy red aril surrounding the seeds of  Taxus baccata.

Fleshy red aril surrounding the seeds of Taxus baccata.

Many of us were taught in school that one of the key distinguishing features between gymnosperms and angiosperms is the production of fruit. Fruit, by definition, is a structure formed from the ovary of a flowering plant. Gymnosperms, on the other hand, do not enclose their ovules in ovaries. Instead, their unfertilized ovules are exposed (to one degree or another) to the environment. The word “gymnosperm” reflects this as it is Greek for “naked seed.” However, as is the case with all things biological, there are exceptions to nearly every rule. There are gymnosperms on this planet that produce structures that function quite similar to fruits.

Cross section of a  Ginkgo  ovule with red arrow showing the integument.  Photo copyright Bruce Kirchoff, Licensed under CC-BY

Cross section of a Ginkgo ovule with red arrow showing the integument.

Photo copyright Bruce Kirchoff, Licensed under CC-BY

The key to understanding this evolutionary convergence lies in understanding the benefits of fruits in the first place. Fruits are all about packing seeds into structures that appeal to the palates of various types of animals who then eat said fruits. Once consumed, the animals digest the fruity bits and will often deposit the seeds elsewhere in their feces. Propagule dispersal is key to the success of plants as it allows them to not only to complete their reproductive cycle but also conquer new territory in the process. With a basic introduction out of the way, let’s get back to gymnosperms.

“Fruits” of  Cephalotaxus fortunei  (Cephalotaxaceae)

“Fruits” of Cephalotaxus fortunei (Cephalotaxaceae)

There are 4 major gymnosperm lineages on this planet - the Ginkgo, cycads, gnetophytes, and conifers. Each one of these groups contains members that produce fleshy structures around their seeds. However, their “fruits” do not all develop in the same way. The most remarkable thing to me is that, from a developmental standpoint, each lineage has evolved its own pathway for “fruit” production.

Ginkgo  “fruits” are full of butyric acid and smell like rotting butter or vomit.

Ginkgo “fruits” are full of butyric acid and smell like rotting butter or vomit.

For instance, consider ginkgos and cycads. Both of these groups can trace their evolutionary history back to the early Permian, some 270 - 280 million years ago, long before flowering plants came onto the scene. Both surround their developing seed with a layer of protective tissue called the integument. As the seed develops, the integument swells and becomes quite fleshy. In the case of Ginkgo, the integument is rich in a compound called butyric acid, which give them their characteristic rotten butter smell. No one can say for sure who this nasty odor originally evolved to attract but it likely has something to do with seed dispersal. Modern day carnivores seem to be especially fond of Ginkgo “fruits,” which would suggest that some bygone carnivore may have been the main seed disperser for these trees.

“Fruits” contained within the female cone of a cycad ( Lepidozamia peroffskyana ).

“Fruits” contained within the female cone of a cycad (Lepidozamia peroffskyana).

The Gnetophytes are represented by three extant lineages (Gnetaceae, Welwitschiaceae, and Ephedraceae), but only two of them - Gnetaceae and Ephedraceae - produce fruit-like structures. As if the overall appearance of the various Gnetum species didn’t make you question your assumptions of what a gymnosperm should look like, its seeds certainly will. They are downright berry-like!

Berry-like seeds of  Gnetum gnemon .

Berry-like seeds of Gnetum gnemon.

The formation of the fruit-like structure surrounding each seed can be traced back to tiny bracts at the base of the ovule. After fertilization, these bracts grow up and around the seed and swell to become red and fleshy. As you can imagine, Gnetum “fruits” are a real hit with animals. In the case of some Ephedra, the “fruit” is also derived from much larger bracts that surround the ovule. These bracts are more leaf-like at the start than those of their Gnetum cousins but their development and function is much the same.

Red, fleshy bracts of  Ephedra distachya .

Red, fleshy bracts of Ephedra distachya.

Whereas we usually think of woody cones when we think of conifers, there are many species within this lineage that also have converged on fleshy structures surrounding their seeds. Probably the most famous and widely recognized example of this can be seen in the yews (Taxus spp.). Ovules are presented singly and each is subtended by a small stalk called a peduncle. Once fertilized, a group of cells on the peduncle begin to grow and differentiate. They gradually swell and engulf the seed, forming a bright red, fleshy structure called an “aril.” Arils are magnificent seed dispersal devices as birds absolutely relish them. The seed within is quite toxic so it usually escapes the process unharmed and with any luck is deposited far away from the parent plant.

The berry-like cones of  Juniperus communis .

The berry-like cones of Juniperus communis.

Another great example of fleshy conifer “fruits” can be seen in the junipers (Juniperus spp.). Unlike the other gymnosperms mentioned here, the junipers do produce cones. However, unlike pine cones, the scales of juniper cones do not open to release the seeds inside. Instead, they swell shut and each scale becomes quite fleshy. Juniper cones aren’t red like we have seen in other lineages but they certainly garnish the attention of many a small animal looking for food.

I have only begun to scratch the surface of the fruit-like structures in gymnosperms. There is plenty of literary fodder out there for those of you who love to read about developmental biology and evolution. It is a fascinating world to uncover. More importantly, I think the fleshy “fruits” of the various gymnosperm lineages stand as a testament to the power of natural selection as a driving force for evolution on our planet. It is amazing that such distantly related plants have converged on similar seed dispersal mechanisms by so many different means.

Photo Credits: [1] [2] [3] [4] [5] [6] [7] [8]

Further Reading: [1] [2] [3] [4] [5] [6] [7]

Fluorescent Bananas

4023036941_c9c93a3684_o.jpg

Bananas are one of the most popular fruits in the world. Love them or hate them, most of us know what they look like. Despite their global presence, few stop to think about where these fruits come from. That is a shame because bananas are fascinating plants for many reasons but now we can add blue fluorescence to that list.

Before we dive into the intriguing phenomenon of fluorescence in bananas, I think it is worth talking about the plants that produce them in a little more detail. Bananas belong to the genus Musa, which is located in its own family - Musaceae. Take a step back and look at a banana plant and it won't take long to realize they are distant relatives of the gingers. There are at least 68 recognized species of banana in the world and many more cultivated varieties. Despite their pan-tropical distribution, the genus Musa is native only to parts of the Indo-Malesian, Asian, and Australian tropics.

Starr_050826-4195_Musa_sp..jpg

Banana plants vary in height from species to species. At the smaller end of the spectrum you have species like the diminutive Musa velutina, which maxes out at about 2 meters (6 ft.) in height. On the taller side of things, there are species such as the monstrous Musa ingens, which can reach heights of 20 meters (66ft.)! Despite their arborescent appearance, bananas are not trees at all. They do not produce any wood. Instead, what looks like a tree trunk is actually the fused petioles of their leaves. Bananas are essentially giant herbs with the aforementioned M. ingens holding the world record for largest herb in the world.

When it comes time to flower, a long spike emerges from the main growing tip. This spike gradually elongates, revealing long, beautiful, tubular flowers arranged in whorls. For many banana species, bats are the main pollinators, however, a variety of insects will visit as well. In the wild, fruits appear following pollination, a trait that has been bred out of their cultivated relatives, which produce fruits without needing pollination. The fruits of a banana are actually a type a berry that dehisce like a capsule upon ripening, revealing delicious pulp chock full of hard seeds. Not all bananas turn yellow upon ripening. In fact, some are pink!

plant_banana_banana_shrub_green_food_banana_tree_leaf_bananas-1022525.jpg

For many fruits, the act of ripening often coincides with a change in color. This is a way for the plant to signal to seed dispersers that the fruits, and the seeds inside, are ready. As many of us know, many bananas start off green and gradually ripen to a bright yellow. This process involves a gradual breakdown of the chlorophyll within the banana skin. As the chlorophyll within the skin of a banana breaks down, it leaves behind a handful of byproducts. It turns out, some of these byproducts fluoresce blue under UV light. 

Amazingly, the fluorescent properties of bananas was only recently discovered. Researchers studying chlorophyll breakdown in the skins of various fruits identified some intriguing compounds in the skins of ripe Cavendish bananas. When viewed under UV light, these compounds gave off a luminescent blue hue. Further investigation revealed that as bananas ripen, their fluorescent properties grow more and more intense.

mfig001.jpg

There could be a couple reasons why this happens. First, it could simply be happenstance. Perhaps these fluorescent compounds are simply a curious byproduct of chlorophyll breakdown and serve no function for the plant whatsoever. However, bananas seem to be a special case. The way in which chlorophyll in the skin of a banana breaks down is quite different than the process of chlorophyll breakdown in other plants. What's more, the abundance of these compounds in the banana skin seems to suggest that the fluorescence does indeed have a function - seed dispersal.

Researchers now believe that the fluorescent properties of some ripe bananas serves as an additional signal to potential seed dispersers that the time is right for harvest. Many animals including birds and some mammals can see well into the UV spectrum and it is likely that the blue fluorescence of these bananas is a means of attracting such animals. Additionally, researchers also found that banana leaves fluoresce in a similar way, perhaps to sweeten the attractive display of the ripening fruits.

To date, little follow up has been done on fluorescence in bananas. It is likely that far more banana species exhibit this trait. Certainly more work is needed before we can say for sure what role, if any, these compounds play in the lives of wild bananas. Until then, this could be a fun trait to investigate in the comfort of your own home. Grab a black light and see if your bananas glow blue!

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2]

Rein In Those Seeds

Mentzelia_laevicaulis_5.jpg

Plants living on islands face a bit of a conundrum. In order to get to said islands, the ancestors of those plants had to exhibit extreme seed or spore dispersal strategies. However, if plants are to persist after arriving to an island, long-distance dispersal becomes rather risky. In the case of oceanic islands, seeds or spores that travel too far end up in the water. As such, we often observe an evolutionary reduction in dispersal ability for island residents. 

Islands, however, are not always surrounded by water. You can have "islands" on land as well. The easiest example for most to picture would be the alpine zone of a mountain. Species adapted to these high-elevation habitats find it hard to compete with species native to low-elevation habitats and are therefore stuck on these "islands in the sky." Less obvious are islands created by a specific soil type. 

Take, for instance, gypseous soils. Such soils are the result of large amounts of gypsum deposits at or near the soil surface. Gypseous soils are found in large quantities throughout parts of western North America, North and South Africa, western Asia, Australia, and eastern Spain. They are largely the result of a massive climatic shift that occurred during the Eocene, some 50 million years ago. 

9773203164_9decf56a9a_o.jpg

Massive mountain building events during that time were causing large reductions in atmospheric CO2 concentrations. The removal of this greenhouse gas via chemical weathering caused a gradual decline in average temperatures around the world. Earth was also becoming a much drier place and throughout the areas mentioned above, hyper-saline lakes began to dry up. As they did, copious amount of minerals, including gypsum, were left behind. 

These mineral-rich soils differ from the surrounding soils in that they contain a lot of salts. Salt makes life incredibly difficult for most terrestrial plants. Life finds a way, however, and a handful of plant species inevitably adapted to these mineral-rich soils, becoming specialists in the process. They are so specialized on these types of soils that they simply cannot compete with other plant species when growing in more "normal" soils. 

Essentially, these gypseous soils function like soil or edaphic islands. Plants specialized in growing there really don't have the option to disperse far and wide. They have to rein it in or risk extirpation. For a group of plants growing in gypseous soils in western North America, this equates to changes in seed morphology. 

Mentzelia is a genus of flowering plants in the family Loasaceae. There are somewhere around 60 to 70 different species, ranging from annuals to perennials, and forbs to shrubs (they are often referred to as blazing stars but since that would lead to too much confusion with Liatris, I will continue to refer to them as Mentzelia).

For most species in this genus, seed dispersal is accomplished by wind. Plants growing on "normal" soils produce seeds with a distinct wing surrounding the seed. A decent breeze will dislodge them from their capsule, causing them blow around. With any luck some of those seeds will land in a suitable spot for germination, far from their parents. Such is not the case for all Mentzelia though. When researchers took a closer look at species that have specialized on gypseous soils, they found something intriguing. 

Mentzelia  phylogeny showing reduction in seed wings.

Mentzelia phylogeny showing reduction in seed wings.

The wings surrounding the seeds of gypseous Mentzelia were either extremely reduced in size or had disappeared altogether. Just as it makes no sense for a plant living on an oceanic island to disperse its seeds far out into the ocean, it too makes no sense for gypseous Mentzelia to disperse their seeds into soils in which they cannot compete. It is thought that limited dispersal may help reinforce the types of habitat specialization that we see in species like these Mentzelia. The next question that must be answered is whether or not such specialization and limited dispersal comes at the cost of genetic diversity. More work will be needed to understand such dynamics. 

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2]

 

Fish: The Unsung Heroes of Seed Dispersal

Fruits of the tucum palm.

Fruits of the tucum palm.

It goes without saying that effective seed (and spore) dispersal is vital for thriving plant populations. Without it, plant populations will stagnate and disappear. Whereas we know quite a bit about the role animals like birds, bats, and ants play in this process, there is another group of seed dispersers that are proving to be vital to the long-term health and survival of tropical forests around the globe - fish. 

The idea of seed dispersing fish may come as a shock to some but mounting evidence is showing that fruit-eating fish play a major role in the reproductive cycle of many tropical plant species. This is especially true in seasonally flooded tropical forests. To date, more than 100 different fish species have been found with viable seeds in their guts. In fact, some fish species, such as the pacu (Piaractus mesopotamicus), specialize on eating fruits.

A big ol' pacu looking for its next fruit meal.

A big ol' pacu looking for its next fruit meal.

By monitoring how fruit-eating fish like the pacu behave in their environment, scientists are painting a picture of tropical seed dispersal that is quite remarkable. Take, for instance, the tucum palm (Bactris glaucescens). Native to Brazil's Pantanal, this palm produces large, red fruits and everything from peccaries to iguanas will consume them. However, when eaten by these animals, the seed either don't make it through the gut in one piece or they end up being pooped out into areas unsuitable for germination. Only when the seeds have been consumed by the pacu do they end up in the right place in the right condition. It appears that pacus are the main seed dispersal agent for this palm. 

A beautiful tucum palm in the dry season.

A beautiful tucum palm in the dry season.

The tucum palm isn't alone either. The seeds of myriad other plant species known to inhabit such seasonally flooded habitats seem to germinate and grow most effectively only after having been dispersed by fish. Pacus are also responsible for a considerable amount of seed dispersal for plants such as Tocoyena formosa (Rubiaceae), Licania parvifolia (Chrysobalanaceae), and Inga uruguensis (Fabaceae). Even outside of the tropics, fish like the channel catfish (Ictalurus punctatus) are being found to be important seed dispersers of riparian plants such as the eastern swampprivet (Forestiera acuminata).

Camu-camu ( Myrciaria dubia )

Camu-camu (Myrciaria dubia)

Without fish, these plants would have a hard time with seed dispersal in such seasonally flooded habitats. Lacking a dispersal agent, these seeds would be stuck at the bottom of a river, buried in anoxic mud. As fish migrate into flooded forests, they can move seeds remarkable distances from their parents. When the flood waters recede, the seeds find themselves primed and ready to usher in the next generation.

Fruits of the Camu-camu ( Myrciaria dubia ) also benefit from dispersal by fish.

Fruits of the Camu-camu (Myrciaria dubia) also benefit from dispersal by fish.

Not all fish perform this task equally as well. Even within a species, there are differences in the effectiveness of seed dispersal services. Scientists are finding that large fish are most effective at proper seed dispersal. Not only can they consume whole fruits with little to no issue, they are also the fish that are most physically capable of moving large distances. Sadly, humans are seriously disrupting this process in a lot of ways.

For starters, dams and other impediments are cutting off the migratory routs of many fish species. Large fish are no longer able to make it into flooded regions of forest far upstream once a dam is in place. What's more, dams keep large tracts of forest from flooding entirely. As such, fish are no longer able to migrate into these regions, which means less seeds are making it there as well. This is bad news for forest regeneration.

"Gimme fruit" says local channel cat.

"Gimme fruit" says local channel cat.

It's not just dams hurting fish either. Over-fishing is a serious issue in most water ways. Pacus, for instance, have seen precipitous declines throughout the Amazon over the last few decades. Specifically targeted are large fish. Unfortunately, regulations that were put into place in order to help these fish may actually be harming their seed dispersal activities. Fish under a certain size must be released from any catch, thus a disproportionate amount of large fish are being removed from the system.

Logging is taking a serious toll as well. Floodplain forests have been hit especially hard by logging, both legal and illegal. The lower Amazon River, for example, has almost no natural floodplain forests left. Reports from fish markets in these areas have shown fewer and fewer frugivorous fish each year. It would appear that large fruit-eating fish are disappearing in the areas that need seed dispersal the most. It is clear that something drastic needs to happen. At the very least, fruit-eating fish need more recognition for the ecosystem services they provide.

Forest health and management is a holistic endeavor. We cannot think of organisms in isolation. This is why ecological literacy is so important. We are only now starting to realize the role of large fish in forest regeneration and who knows what kinds of discoveries are just over the horizon. This is why land conservation efforts are so important. We must move to protect wild spaces before they are lost for good. Please consider donating to one of the many great land conservancy agencies around the globe. 

Photo Credits: [1] [2] [3] [4] [5] [6]

Further Reading: [1] [2] [3]

 

Cockroaches & Unexpected Partnerships

Say "cockroach" and most people will start to squirm. These indefatigable insects are maligned the world over because of a handful of species that have settled in quite nicely among human habitats. The world of cockroaches is far more diverse than most even care to realize, and where they occur naturally, these insects provide important ecological services. For instance, over the last decade or so, researchers have added pollination and seed dispersal to the list of cockroach activities. 

That's right, pollination and seed dispersal. It may seem odd to think of roaches partaking in such interactions but a study published in 2008 provides some of the first evidence that roaches are doing more with plants than eating their decaying tissues. After describing a new species of Clusia in French Guiana, researchers set out to investigate what, if anything, was pollinating it. The plant was named Clusia sellowiana and its flowers emitted a strange scent. 

Cockroach pollinating  C. sellowiana

Cockroach pollinating C. sellowiana

The source of this scent was the chemical acetoin. It seemed to be a rather attractive scent as a small variety of insects were observed visiting the flowers. However, only one insect seemed to be performing the bulk of pollination services for this new species - a small cockroach called Amazonia platystylata. It turns out that the roaches are particularly sensitive to acetoin and although they don't have any specific anatomical features for transferring pollen, their rough exoskeleton nonetheless picks up and deposits ample amounts of the stuff. 

It would appear that C. sellowiana has entered into a rather specific relationship with this species of cockroach. Although this is only the second documentation of roach pollination, it certainly suggests that more attention is needed. This Clusia isn't alone in its interactions with cockroaches either. As I hinted above, roaches can now be added to the list of seed dispersers of a small parasitic plant native to Japan. 

 (A) M. humile fruit showing many minute seeds embedded in the less juicy pulp. (B) Fallen fruits. (C) Blattella nipponica feeding on the fruit. (D) Cockroach poop with seeds. (E) Stained cockroach-ingested seeds

Monotropastrum humile looks a lot like Monotropa found growing in North America. Indeed, these plants are close cousins, united under the family Ericaceae. Interestingly enough, it was only recently found that camel crickets are playing an important role in the seed dispersal of this species. However, it looks like they aren't the only game in town. Researchers have also found that a forest dwelling cockroach called Blattella nipponica serves as a seed disperser as well. 

The roaches were observed feeding on the fruits of this parasitic plant, consuming pulp and seed alike. What's more, careful observation of their poop revealed that seeds of M. humile passed through the digestive tract unharmed. Cockroaches can travel great distances and therefore may provide an important service in distributing the seeds of a rather obscure parasitic plant. To think that this is an isolated case seems a bit naive. It seems to me like we should pay a little more attention to what cockroaches are doing in forests around the world. 

Photo Credits: [1] [2] [3]

Further Reading: [1] [2]

Of Acorns and Squirrels

I find it fun to watch squirrels frantically scurrying about during the fall. Their usually playful demeanor seems to have been replaced with more serious and directed undertones. If you watch squirrels close enough you may quickly realize that, when it comes to oaks, squirrels seem to have a knack for taxonomy. They quickly bury red oak acorns while immediately set to work on eating white oak acorns. Why is this?

Music by:
Artist: Botanist
Track: Stargazer
https://verdant-realm-botanist.bandcamp.com/

Understanding the Cocklebur

Spend enough time in disturbed areas and you will certainly cross paths with a cocklebur (Xanthium strumarium). As anyone with a dog can tell you, this plant has no problems getting around. It is such a common occurrence in my life that I honestly never stopped long enough to think about its place on the taxonomic tree. I always assumed it was some sort of Amaranth relative. You can imagine my surprise then when I recently learned that this hardy species is actually a member of the family Asteraceae. 

Cocklebur doesn't seem to fit with most of its composite relatives. For starters, its flowers are not all clustered together into a single flower head. Instead, male and female flowers are borne separately on the same plant. Male flower clusters are produced at the top of the flowering stem. Being wind pollinated, they quickly dump mass quantities of pollen into the air and wither away. The female flowers are clustered lower on the stem and consist of two pistillate florets situated atop a cluster of spiny bracts. 

After fertilization, these bracts swell to form the burs that so many of us have had to dig out of the fur of our loved ones. Inside that bur resides the seeds. Cocklebur is a bit strange in the seed department as well. Instead of producing multiple seeds complete with hairy parachutes, the cocklebur produces two relatively large seeds within each bur. There is a "top" seed, which sits along the curved, convex side of the bur, and a "bottom" seed that sits along the inner flat surface of the bur. Studies performed over a century ago demonstrated that these two seeds are quite important in maintaining cocklebur on the landscape. 

You see, cocklebur is an annual. It only has one season to germinate, grow, flower, and produce the next generation. We often think of annual plants as being quite hardy but in reality, they can sometimes be a bit picky about when and where they will grow. For that reason, seed banking is super important. Not every year will produce favorable conditions so dormant seeds lying in the soil act as an insurance policy. 

Whereas the bottom seed germinates within a year and maintains the plants presence when times are good, the top seed appears to have a much longer dormancy period. These long-lived seeds can sit in the soil for decades before they decide to germinate. Before humans, when disturbance regimes were a lot less hectic, this strategy likely assured that cocklebur would manage to stick around in any given area for the long term. Whereas fast germinating seeds might have been killed off, the seeds within the seed bank could pop up whenever favorable conditions finally presented themselves. 

Today cocklebur seems to be over-insured. It is a common weed anywhere soil disturbance produces bare soils with poor drainage. The plant seems equally at home growing along scoured stream banks as it does roadsides and farm fields. It is an incredibly plastic species, tuning its growth habit to best fit whatever conditions come its way. As a result, numerous subspecies, varieties, and types have been described over the years but most are not recognized in any serious fashion. 

Sadly, cocklebur can become the villain as its burs get hopelessly tangled in hair and fur. Also, every part of the plant is extremely toxic to mammals. This plant has caused many a death in both livestock and humans. It is an ironic situation to consider that we are so good at creating the exact kind of conditions needed for this species to thrive. Love it or hate it, it is a plant worth some respect. 

Photo Credits: [1] [2] 

Further Reading: [1] [2]

Birds Work a Double Shift For Osmoxylon

1280px-Miagos_bush_(Osmoxylon_lineare)_1.jpg

Plants go to great lengths to achieve pollination. Some can be tricky, luring in pollinators with a promise of food where there is none. Others, however, really sweeten the deal with ample food reserves. At least one genus of plants has taken this to the extreme, using the same techniques for pollination as it does for seed dispersal. I present to you the genus Osmoxylon.

Comprised of roughly 60 species spread around parts of southeast Asia and the western Pacific, the genus Osmoxylon hail from a variety of habitats. Some live in the deep shade of the forest understory whereas others prefer more open conditions. They range in size from medium sized shrubs to small trees and, upon flowering, their place within the family Araliaceae becomes more apparent.

640px-Miagos_bush_(Osmoxylon_lineare).jpg

Look closely at the flowers, however, and you might notice a strange pattern. It would appear that as soon as flowers develop, the plant has already produced berries. How could this be? Are there cleistogamous flowers we aren't aware of? Not quite. The truth, in fact, is quite peculiar. Of the various characteristics of the genus, one that repeatedly stands out is the production of pseudo-fruits. As the fertile flowers begin to produce pollen, these fake fruits begin to ripen. There aren't any seed inside. In truth, I don't think they can technically be called fruits at all. So, why are they there?

Although actual observations will be required to say for sure, the running hypothesis is that these pseudo-fruits have evolved in response to the presence of birds. They are pretty fleshy and would make a decent meal. It is thought that as birds land on the umbel to eat these pseudo-fruits, they invariably pick up pollen in the process. The bird the exchanges pollen with every subsequent plant it visits. Thus, pollination is achieved.

The relationship with birds doesn't end here. Like other members of this family, pollination results in the formation of actual fruits full of seeds. Birds are known for their seed dispersal abilities and the Osmoxylon capitalize on that as well. As such, the reproductive input of their avian neighbors is thought to be two-fold. Not only are birds potentially great pollinators, they are also great seed dispersers, taking fruits far and wide and depositing them in nutrient-rich packets wherever they poop.

Photo Credits: [1] [2]

Further Reading: [1]

Seed Anchor

Epiphytic plants live out their entire lives on the trunks or branches of trees. Using their roots, they attach themselves tightly to the bark. Spend any amount of time in the tropics and it will become quite clear that such a lifestyle has been very successful for a plethora of different plant families. Still, living on a tree isn't easy. Epiphytic plants must overcome harsh conditions among or near the canopy.

One of the biggest challenges these plants face starts before they even germinate. This is especially true for orchids. Orchid seeds are more like spores than they are seeds. They are so small that thousands could fit inside of a thimble. Upon ripening, the dust-like seeds waft away on the slightest breeze. In order for epiphytic species to germinate and grow, their seeds must somehow anchor themselves in place on a trunk or branch. Inevitably most seeds are doomed to fail. They simply will not land in a suitable location. It stands to reason then that any adaptation that increases their chances of finding the right kind of habitat will be favored. That's where the strange coils on the tip of Chiloschista seeds, a genus of leafless orchids native to southeast Asia, New Guinea, and Australia, come in. For these orchids, this process is aided by some truly unique seed morphology.

Unlike most orchid seeds that are nothing more than a thin sheath surrounding a tiny embryo, the seeds of Chiloschista have additional parts. These "appendages," which are specialized seed coat cells, are tightly wound into coils. Upon contact with water, these coils shoot out like tiny grappling hooks that grab on to moss and bark alike. In doing so, they anchor the seed in place. By securing their hold on the trunk or branch of a tree, the seeds are much more likely to germinate and grow. This is one of the most extreme examples of seed specialization in the orchid family.

Photo Credit: [1] [2]

Further Reading: [1]

Lizard Helpers

The beauty of Tasmania's honeybush, Richea scoparia, is equally matched by its hardiness. At home across alpine areas of this island, this stout Ericaceous shrub has to contend with cold temperatures and turbulent winds. The honeybush is superbly adapted to these conditions with its compact growth, and tough, pointy leaves. Even its flowers are primed for its environment. They emerge in dense spikes and are covered by a protective casing comprised of fused petals called a "calyptra." Such adaptations are great for protecting the plant and its valuable flowers from such brutal conditions but how does this plant manage pollination if its flowers are closed off to the rest of the world? The answer lies in a wonderful little lizard known as the snow skink (Niveoscincus microlepidotus).

The snow skink is not a pollinator. Far from it. All the snow skink wants is access to the energy rich nectar contained within the calyptra. In reality, the snow skink is a facilitator. You see, the calyptra may be very good at shielding the developing flower parts from harsh conditions, but it tends to get in the way of pollination. That is where the snow skink comes in. Attracted by the bright coloration and the nectar inside, the snow skink climbs up to the flower spike and starts eating the calyptra. In doing so, the plants reproductive structures are liberated from their protective sheath. 

Once removed, the flowers are visited by a wide array of insect pollinators. In fact, research shows that this is the only mechanism by which these plants can successfully outcross with their neighbors. Not only does the removal of the calyptra increase pollination for the honeybush, it also aids in seed dispersal. Experiments have shown that leaving the calyptra on resulted in no seed dispersal. The dried covering kept the seed capsules from opening. When calyptras are removed, upwards of 87% of seeds were released successfully. 

Although several lizard species have been identified as pollinators and seed dispersers, this is some of the first evidence of a reptilian pollination syndrome that doesn't actually involve a lizard in the act of pollination. It is kind of bizarre when you think about it. As if pollination wasn't strange enough in requiring a third party for sexual reproduction to occur, here is evidence of a fourth party required to facilitate the action in the first place. It may not be just snow skinks that are involved either. Evidence of birds removing the calyptra have also been documented. Whether its bird or lizard, this is nonetheless a fascinating coevolutionary relationship in response to cold alpine conditions. 

Photo Credits: [1] [2]

Further Reading: [1]

On Crickets and Seed Dispersal

The world of seed dispersal strategies is fascinating. Since the survival of any plant species requires that its seed find a suitable place to germinate, it is no wonder then that there are myriad ways in which plants disseminate their propagules. Probably my favorite strategies to ponder are those involving diplochory. Diplochory is a fancy way of saying that seed dispersal involves two or more dispersal agents. Probably the most obvious to us are those that utilize fruit. For example, any time a bird eats a fruit and poops out the seeds elsewhere, diplochory has happened.

Less familiar but equally as cool forms of diplochory involve insect vectors. We have discussed myrmecochory (ant dispersal) in the past as well as a unique form of dispersal in which seeds mimic animal dung and are dispersed by dung beetles. But what about other insects? Are there more forms of insect seed dispersal out there? Yes there are. In fact, a 2016 paper offers evidence of a completely overlooked form of insect seed dispersal in the rainforests of Brazil. The seed dispersers in this case are crickets.

Yes, you read that correctly - crickets. Crickets have been largely ignored as potential seed dispersers. Most are omnivores that eat everything from leaves to seeds and even other insects. One report from New Zealand showed that a large species of cricket known as the King weta can disperse viable seeds in its poop after consuming fruits. However, this is largely thought to be incidental. Despite this, few plant folk have ever considered looking at this melodic group of insects... until now. 

The team who published the paper noticed some interesting behavior between crickets and seeds of plants in the family Marantaceae. Plants in this group attach a fleshy structure to their seeds called an aril. The function of this aril is to attract potential seed dispersers. By offering up seeds from various members of the family, the research team were able to demonstrate that seed dispersal by crickets in this region is quite common. Even more astounding, they found that at least six different species of cricket were involved in removing seeds from the study area. What's more, these crickets only ate the aril, leaving the seed behind.

The question of whether this constitutes effective seed dispersal remains to be seen. Still, this research suggests some very interesting things regarding crickets as seed dispersal agents. Not only did the crickets in this study remove the same amount of seeds as ants, they also removed larger seeds and took them farther than any ant species. Since only the aril is consumed, such behavior can seriously benefit large-seeded plants. Also, whereas ant seed dispersal occurs largely during daylight hours, cricket dispersal occurs mostly at night, thus adding more resolution to the story of seed dispersal in these habitats. I am very interested to see if this sort of cricket/seed interaction happens elsewhere in the world.

Photo Credits: [1] [2]

Further Reading: [1]

 

A Recently Discovered Species From Brazil Plants Its Own Seeds

Life on the ground is tough in the rainforest. There is ample competition and extremely fast rates of decomposition. Anything that can give a plant an advantage, however slight, can mean the difference between death and survival. For a recently discovered plant, this means planting its own seeds.

Spigelia genuflexa was first described in 2011. It was found in northeastern Brazil in an area known as Bahia. It is a small plant, maxing out around 20 cm in height. In actuality, two growth forms have been recognized, a tall form, which produces flowers at heights of 10-20 cm, and a short form that produces flowers at heights of about 1 cm. It has been placed in the family Loganiaceae, making it a distant cousin of the North American Indian pink. It blooms during the rainy season, throwing up a couple of small white and pink flowers. At this point, no pollinators have been identified and morphological evidence would suggest it most often self fertilizes. Overall it is an adorable little plant.

The coolest aspect of this new species is how it manages seed dispersal. S. genuflexa exhibits an interesting form of reproduction called "geocarpy." In other words, this diminutive species plants its own seeds. After fertilization, the flowering stems start to bend towards the ground. In the tall form, the ripe fruits are deposited on the soil surface. The small form does something a bit different. It doesn't stop once it touches the ground. The stem continues to push the fruits down into the soil. This behavior was only discovered after the plant had been collected. Back in the lab, the researchers noticed the flowering stems ducking down under the moss they were growing in. By doing this, the parent plants are helping their precious seeds avoid predation and the myriad other threats to seed survival, thus giving them a head start on germination.

Photo Credit: Alex Popovkin

Further Reading: [1]

 

Sequential Ripening

10592744_944042965622569_7717034587841205988_n.jpg

There are few things better than hiking on a hot summer day and coming across a big patch of ripe blackberries and/or raspberries. If you're anything like me then you promptly gorge yourself on handfuls of these sweet aggregate fruits. However, the genus Rubus never gives its fruit away all at once. Although this may seem like a pain for us humans, there is good reason for it.

The answer to this ripening strategy lies in the seed dispersers. A multitude of animals feed on the fruit of the genus Rubus but by and large the best seed dispersers are birds. Rubus fruits begin to ripen around the time when many birds are beginning to ramp up their food intake to prep for either migration or the long winter to come. Regardless, birds can travel great distances and thus can spread seeds via their droppings wherever they go.

If Rubus were to ripen their fruit all at once, only a handful of birds would make use of the entire seasons reproductive effort. This means that all the seeds of an individual plant would likely fall to the ground in the general vicinity of the parent. By sequentially ripening their fruit, Rubus ensure that their seeds will not only be available for a few weeks to a couple of months, it also ensures that birds, as well as many other animals, will be involved in the distribution of seeds. It's not just the genus Rubus that does this either. Plenty of other berry producing plants ripen their fruitss sequentially. It is a wonderfully successful strategy to persuade mobile organisms to do exactly what the plants require. 

Photo Credit: Nicholas A. Tonelli (http://bit.ly/1q6Gvja)

Further Reading:
http://bit.ly/29ghcwL

Why Light Pollution is Harming Tropical Forest Regeneration

Light pollution is a real thing that we should all be concerned about. Far from just being aesthetically displeasing, light pollution has been shown to have serious detrimental effects on nocturnal life on this planet. By blotting out the stars with night lights, humans are depriving many organisms the cues they need for activities such as navigation and breeding. It doesn't end there either. A 2014 paper published in the Journal of Applied Ecology has shown that light pollution is impairing rainforest regeneration.

How is this possible? Surely the light produced by man at night is not significant enough to affect photosynthesis and germination, right? The answer may not be as straight forward as one may think. The truth is, in many parts of the world, bats are important pollinators and seed dispersers. In the tropics, they are some of the only animals that will disperse seed (via their guano) into cleared patches of forest.

Researchers have found that when exposed to light, especially the kind used to light streets, buildings, and houses, bats were significantly less likely to spend time in those areas. This means less foraging and fewer seed dispersal events. Basically, as humans expand into these forested habitats and begin lighting up areas at night, fewer bats hang around and the forests suffer the brunt of this absence. As light pollution increases across the globe, I am sure that more and more of these types of relationships will be disrupted.

Photo Credit: Katja Schulz (http://bit.ly/1fou0OY)

Further Reading:
http://bit.ly/1V2kjHW

Dung Seeds

There are a lot of interesting seed dispersal mechanisms out there. It makes sense too because effective seed dispersal is one of the most important factors in a plant's life cycle. It is no wonder then that plants have evolved myriad ways to achieve this. Everything from wind to birds to mammals and even ants have been recruited for this task. Now, thanks to a group of researchers in South Africa, we can add dung beetles to this list.

That's right, dung beetles. These little insects are famous the world over for their dung rolling lifestyle. These industrious beetles are quite numerous and play an important role in the decomposition of feces on the landscape. Without them, the world would be a gross place. They don't do this for us, of course. Instead, dung beetles both consume the dung and lay their eggs on the balls. They are often seen rolling these balls across the landscape until they find the perfect spot to bury it where other dung-feeding animals won't find it. It is this habit that a plant known scientifically as Ceratocaryum argenteum has honed in on.

The seeds of this grass relative are hard and pungent. Researchers questioned why the plant would produce such smelly seeds. After all, the scent would hypothetically make it easier for seed predators to find them. However, the typical seed predators of this region such as birds and rodents show no real interest in them. What's more, when offered seeds directly, rodents only ate seeds in which the tough, smelly coat had been removed. Using cameras, the researchers studied the behavior of these animals time and time again. It was only after viewing hours of video that they made their discovery.

Although they weren't big enough to trip the cameras themselves, incidental footage caught dung beetles checking out the seeds and rolling them away. As it turns out, the scent and appearance (which closely mimics that of antelope dung) tricks the dung beetles into thinking they found the perfect meal. As such, the dung beetles do exactly what the plant needs - they bury the seeds. This is a dead end for the dung beetle. Only after a seed has been buried do they realize that it is both inedible and an unsuitable nursery. Nonetheless, the drive for reproduction is so strong that the plant is able to successfully trick the dung beetles into dispersing their seeds.

Photo Credit: Nicky vB (bit.ly/1WVgs0G) and Nature Plants

Further Reading:
http://www.nature.com/articles/nplants2015141

Fiery Peppers - Evolution of the Burn

Love them or hate them, one must respect the fiery chili pepper. If you're like me then the addition of these spicy fruits can greatly enhance the culinary experience. For others, spice can be a nightmare. Peppers are so commonplace throughout many cultures of the world that it is easy to overlook them. As a plant fanatic, even the simple act of cooking dinner opens the door to so many interesting questions. What is a pepper? Where do they come from? And why are some so spicy?

Peppers evolved in the Americas. The genus to which they belong, Capsicum, is comprised of somewhere around 27 species. Of these, five have been domesticated. They have no relation whatsoever to black pepper (Piper nigrum). Instead, the chili peppers are relatives of tomatoes, potatoes, and eggplants - family Solanaceae.

The fruit that they produce is actually a type of berry. In the wild, Capsicum fruits are much smaller than the ones we buy at the farmers market or grocery store. Centuries of domestication has created such gaudy monsters. The spicy effect one experiences when biting into a pepper is the result of a chemical called capsaicin. It is mainly produced in the placental tissues and the internal membranes. It is in its highest concentrations in the white pith that surrounds the seeds.

Capsicum chinense

Capsicum chinense

As with any fruit, the main goal is seed dispersal. Why then would the plant arm its fruits with fiery capsaicin? The answer to this riddle lies in their wild relatives. As mentioned, the fruits of wild peppers are much smaller in nature. When ripe, they turn bright shades of reds, yellows, and oranges. Their small size and bright coloration are vivid sign posts for their main seed dispersersal agents - birds.

As it turns out, birds are not sensitive to capsaicin. Mammals and insects are, however, and that is a fact not lost on the plants. Capsaicin is there to deter such critters from feeding on the fruits and wasting hard earned reproductive efforts. As such, the well defended fruits can sit on the plant until they are ripe enough for birds to take them away, spreading seeds via their nutrient rich droppings.

It may be obvious at this point that the mammal-deterring properties of Capsicum have been no use on humans. Many of us enjoy a dash of spice in our meals and some people even see it as a challenge. We have bred peppers that are walking a thin line between spicy and dangerous. All of this has been done to the benefit of the five domesticated species, which today enjoy a nearly global distribution. Take this as some food for thought the next time you are prepping a spicy meal.

Photo Credits: Ryan Bushby, André Karwath, and Eric Hunt - Wikimedia Commons

Further Reading:
http://link.springer.com/article/10.1007%2FBF00994601

http://www.jstor.org/stable/4163197…

http://www.press.uchicago.edu/ucp/journals/journal/ijps.html

The Largest Seed in the World

Coco_de_mer.jpg

For Lodoicea maldivica, better known as coco de mer, producing the largest seeds in the world may seem like a cool fact for the record books but it certainly has its drawbacks. However, as with anything in nature, selection would not allow for wasteful traits to be passed on. Costs must be offset by a reproductive advantage on some level. A recent study looked at what these tradeoffs might be for L. maldivica and what they found is pretty incredible.

With seeds clocking in at upwards of 30 kg (66 lbs.) one has to wonder what L. maldivica is up to. It was long thought that, like the coconut, seeds of this palm must be dispersed by water. However, they are simply too dense to float. Instead, seed dispersal for this peculiar species of palm is actually quite limited. They simply fall from the tree and germinate below the canopy.

This may explain why L. maldivica is endemic only to the islands of Praslin and Curieuse in the Seychelles. It's not just the seeds that are huge either. The female flowers, which are borne on separate trees than the males, are the largest female flowers of any species of palm. At 10 m (32 ft.) in diameter, the leaves are also massive, fanning outwards on petioles that can reach 2 m to 4 m (6.5 - 13 ft) in length. It goes without saying that L. maldivica is a palm full of superlatives.

Counterintuitively, the habitats in which they grow are notoriously low in nutrients. Why then would this palm invest so much energy into growing these gigantic structures? Because they tend to germinate and grow beneath their parents, the offspring of L. maldivica would appear to be at a disadvantage from the start. A recent study suggests that the answer lies in those massive leaves.

Researchers found that the areas directly beneath the adult trees were wetter and had more soil nutrients compared to the surroundings. As it turns out, L. maldivica modifies its own habitat. Those massive leaves do more than just collect sun, they also act as giant funnels. In fact, most of the water that rains down onto the canopy is collected by the leaves. In this way, everything from water, debris, and even excess pollen is funneled down to the base of each tree.

Not only is this good for the parent tree, it is also a boon for the dispersal-limited offspring. Coupled with the considerable endosperm in those massive seeds, all of this additional water and fertilizer means that seedling L. maldivica enter into the world at a distinct advantage over many other plants on the islands. All of that endosperm serves to help fuel seedling growth while it is still shaded by its parent.

Sadly, over-harvesting of the seeds has crippled natural reproduction for L. maldivica. This coupled with habitat destruction paints a bleak picture for this record-holding palm. It has already been lost from three other Seychelles islands. Luckily there are many conservation efforts underway that are aimed at saving L. maldivica. The Seychelles are now considered a World Heritage Site and many of the wild populations of this palm lie within national parks.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2]

A Real Cliffhanger

image.jpg

Cliff faces are some of the most interesting habitat types on the planet. Few places in the world are as inhospitable. They are low in nutrient levels, they have limited space for root growth, and offer very little for recruitment. Cliffs do offer some benefits though. They are often sheltered from extremes in climate and can be inaccessible to large herbivores. With that in mind, it is understandable how they can be a haven for some very unique and equally extreme life forms.

One such life form that comes to mind is Borderea chouardii. This strange plant grows only on a couple cliff faces in the Pyrenees mountain range in Spain. It is critically endangered as it represents a relict population of a once tropical Tertiary environment. What makes it more interesting is the double mutualism it has formed with ants. As we have touched on a few times in the past, ants are often recruited as seed dispersers. Borderea chouardii does just that. In many of the observed cases of seed dispersal, researchers found that ants were the culprit. Interestingly enough, a majority of the remaining cases were due to the plant literally planting its own seeds. Known as "skototropism," the stems of the seed cases grow into dark crevices, which are perfect spots for seed to germinate and grow. Surprisingly, gravity plays a very small role in the reproduction of this species.

Let me back up for a bit here. I did mention this plant has a double mutualism with ant species after all. Based on years of observation, researchers found that ants actually served as the most efficient pollinator for Borderea chouardii. This is not a common thing. Generally speaking, ants do not make for effective pollinators. Most species have glands that secrete substances that destroy pollen. However, in a mountainous cliff setting, winged insects are relatively rare, so Borderea chouardii and ants have evolved together into this oddball double mutualism. To add an extra layer of complexity to the system, dare I mention that it isn't just one ant species that Borderea chouardii relies on, but rather 3. Two ant species serve as the pollinators while a a third ant species serves as a seed disperser. This is one risky plant species. The plant gets around the rarity of successful recruitment by living a long time. Individual plants can live upwards of 300 years, which is quite possibly the record for a non-clonal forb species.

Photo Credit: María B. García, Xavier Espadaler, Jens M. Olesen

Further Reading:

http://www.plosone.org/…/info%3Adoi%2F10.1371%2Fjournal.pon…

http://www.iucnredlist.org/details/162110/0