The Creeping Strawberry Pine

12170045845_ede1224ecf_o.jpg

With its small, creeping habit and bright red, fleshy female cones, it is easy to see how Microcachrys tetragona earned its common name “creeping strawberry pine.” This miniature conifer is as adorable as it is interesting. With a fossil history that spans 66 million years of Earth’s history, it also has a lot to teach us about biogeography.

Today, the creeping strawberry pine can only be found growing naturally in western Tasmania. It is an alpine species, growing best in what is commonly referred to as alpine dwarf scrubland, above 1000 m (3280 ft) in elevation. Like the rest of the plants in such habitats, the creeping strawberry pine does not grow very tall at all. Instead, it creeps along the ground with its prostrate branches that barely extend more than 30 cm (0.9 ft) above the soil. This, of course, is likely an adaptation to its alpine environment. Plants that grow too tall frequently get knocked back by brutal winds and freezing temperatures among other things.

The typical growth habit of the creeping strawberry pine.

The typical growth habit of the creeping strawberry pine.

The creeping strawberry pine is not a member of the pine family (Pinaceae) but rather the podocarp family (Podocarpaceae). This family is interesting for a lot of reasons but one of the coolest is the fact that they are charismatic representatives of the so-called Antarctic flora. Along with a handful of other plant lineages, it is thought that Podocarpaceae arose during a time when most of the southern continents were combined into a supercontinent called Gondwana. Subsequent tectonic drift has seen the surviving members of this flora largely divided among the continents of the Southern Hemisphere. By combining current day distributions with fossil evidence, researchers are able to use families such as Podocarpaceae to tell a clearer picture of the history of life on Earth.

What is remarkable is that among the various podocarps, the genus Microcachrys produces pollen with a unique morphology. When researchers look at pollen under the microscope, whether extant or fossilized, they can say with certainty if it belongs to a Microcachrys or not. The picture we get from fossil evidence paints an interesting picture for Microcachrys diversity compared to what we see today. It turns out, Microcachrys endemic status is a more recent occurrence.

This distinctive, small, trisaccate pollen grain is typical of what you find with  Microcachrys  whereas all other podocarps produce bisaccate pollen.

This distinctive, small, trisaccate pollen grain is typical of what you find with Microcachrys whereas all other podocarps produce bisaccate pollen.

The creeping strawberry pine is what we call a peloendemic, meaning it belongs to a lineage that was once far more widespread but today exists in a relatively small geographic location. Fossilized pollen from Microcachrys has been found across the Southern Hemisphere, from South America, India, southern Africa, and even Antarctica. It would appear that as the continents continued to separate and environmental conditions changed, the mountains of Tasmania offered a final refuge for the sole remaining species in this lineage.

Another reason this tiny conifer is so charming are its fruit-like female cones. As they mature, the scales around the cone swell and become fleshy. Over time, they start to resemble a strawberry more than anything a gymnosperm would produce. This is yet another case of convergent evolution on a seed dispersal mechanism among a gymnosperm lineage. Birds are thought to be the main seed dispersers of the creeping strawberry pine and those bright red cones certainly have what it takes to catch the eye of a hungry bird. It must be working well for it too. Despite how narrow its range is from a global perspective, the creeping strawberry pine is said to be locally abundant and does not face the same conservation issues that many other members of its family currently face. Also, its unique appearance has made it something of a horticultural curiosity, especially among those who like to dabble in rock gardening.

Mature female cones look more like angiosperm fruit than a conifer cone.

Mature female cones look more like angiosperm fruit than a conifer cone.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3]

Lizard Helpers

The beauty of Tasmania's honeybush, Richea scoparia, is equally matched by its hardiness. At home across alpine areas of this island, this stout Ericaceous shrub has to contend with cold temperatures and turbulent winds. The honeybush is superbly adapted to these conditions with its compact growth, and tough, pointy leaves. Even its flowers are primed for its environment. They emerge in dense spikes and are covered by a protective casing comprised of fused petals called a "calyptra." Such adaptations are great for protecting the plant and its valuable flowers from such brutal conditions but how does this plant manage pollination if its flowers are closed off to the rest of the world? The answer lies in a wonderful little lizard known as the snow skink (Niveoscincus microlepidotus).

The snow skink is not a pollinator. Far from it. All the snow skink wants is access to the energy rich nectar contained within the calyptra. In reality, the snow skink is a facilitator. You see, the calyptra may be very good at shielding the developing flower parts from harsh conditions, but it tends to get in the way of pollination. That is where the snow skink comes in. Attracted by the bright coloration and the nectar inside, the snow skink climbs up to the flower spike and starts eating the calyptra. In doing so, the plants reproductive structures are liberated from their protective sheath. 

Once removed, the flowers are visited by a wide array of insect pollinators. In fact, research shows that this is the only mechanism by which these plants can successfully outcross with their neighbors. Not only does the removal of the calyptra increase pollination for the honeybush, it also aids in seed dispersal. Experiments have shown that leaving the calyptra on resulted in no seed dispersal. The dried covering kept the seed capsules from opening. When calyptras are removed, upwards of 87% of seeds were released successfully. 

Although several lizard species have been identified as pollinators and seed dispersers, this is some of the first evidence of a reptilian pollination syndrome that doesn't actually involve a lizard in the act of pollination. It is kind of bizarre when you think about it. As if pollination wasn't strange enough in requiring a third party for sexual reproduction to occur, here is evidence of a fourth party required to facilitate the action in the first place. It may not be just snow skinks that are involved either. Evidence of birds removing the calyptra have also been documented. Whether its bird or lizard, this is nonetheless a fascinating coevolutionary relationship in response to cold alpine conditions. 

Photo Credits: [1] [2]

Further Reading: [1]

Noble Rhubarb

en_2163.jpg

The Himalayas. If there was ever a natural wonder worthy of the title "epic" it would certainly be these towering peaks. Home to some of the tallest points on our planet, these ragged peaks are best known for the near insurmountable challenges faced by adventurers from all around the world. Considering their elevation, it would seem that permanent life simply isn't possible on these mountains. However, this could not be further from the truth. Among sprawling shrubs and diminutive herbs towers one of the most peculiar plants known to the world. To make things more interesting, it is a relative of rhubarb, a denizen of gardens and pies throughout much more hospitable climates. 

Rheum_nobile.jpg

Meet the noble rhubarb, Rheum nobile. Growing at elevations between 13,000 and 15,000 feet (4000–4800 m), this species is quite deserving of its noble status. Plants growing at such elevations face some serious challenges. Temperatures regularly drop well below freezing and there is no shortage of damaging UV radiation. As with most alpine zones, a majority of plants cope with these conditions by growing prostrate over the ground and taking what little refuge they can find behind rocks. Not Rheum nobile. This member of the buckwheat family can grow to heights of 6 feet, making it easily the tallest plant around for miles. 

The most striking feature of this plant is the large spire of translucent bracts. These modified leaves contain no chlorophyll and thus do not serve as centers for photosynthesis. Instead, these structures are there to protect and warm the plant. Tucked behind the bracts are the flowers. If they were to be exposed to the elements, they would either freeze or be fried by UV radiation. Instead, these ghostly bracts contain specialized pigments that filter out damaging UV wavelengths while at the same time creating a favorable microclimate for the flowers and seeds to develop. In essence, the plant grows its own greenhouse.

18410328859_c0d8882075_o.jpg

As a result, temperatures within the plant can be as much as 10 degrees warmer than the ambient temperatures outside. At such elevations, this is a real boost to its reproductive efforts. Even more of a challenge is the fact that at this elevation, pollinators are often in short supply. Plants have to do what they can to get their attention. Not only does Rheum nobile offer a visual cue that is in stark contrast to its bleak surroundings, it also goes about attracting pollinators chemically as well.

Rheum nobile has struck up a mutualistic relationship with fungus gnats living at these altitudes. The plant produces a single chemical compound that attracts the female fungus gnats. The females lay their eggs in the developing seeds of the plant but, in return, pollinate far more flowers than they can parasitize. These organisms have managed to strike a balance in these mountains. In return for pollination, the fungus gnats have a warm place to raise their young that is sheltered from the damaging UV radiation outside. 

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3] [4] [5]