The White Walnut

I must admit, I am not very savvy when it comes to trees. I love and appreciate them all the same, however, my attention is often paid to the species growing beneath their canopy. last summer changed a lot of that. I was very lucky to be surrounded by people that know trees quite well. Needless to say I picked up a lot of great skills from them. Despite all of this new information knocking around in my brain, there was one tree that seemed to stand out from the rest and that species is Juglans cinerea.

Afternoons and evenings at the research station were a time for sharing. We would all come out of the field each day tired but excited. The days finds were recounted to eager ears. Often these stories segued into our goals for the coming days. That is how I first heard of the elusive "white walnut." I had to admit, it sounded made up. Its as if I was being told a folktale of a tree that lived in the imagination of anyone who spent too much time in the forest. 

Only a handful of people knew what it was. I listened intently for a bit, hoping to pick up some sort of clue as to what exactly this tree was. Finally I couldn't take it any longer so I chimed in and asked. As it turns out, the white walnut is a tree I was already familiar with, though not personally. Another common name for this mysterious tree is the butternut. Ah, common names. 

I instantly recalled a memory from a few years back. A friend of mine was quite excited about finding a handful of these trees. He was very hesitant to reveal the location but as proof of his discovery he produced a handful of nuts that sort of resembled those of a black walnut. These nuts were more egg shaped and not nearly as large. Refocusing on the conversation at hand, I now had a new set of questions. Why was this tree so special? Moreover, why was it so hard to find?

The white walnut has quite a large distribution in relation to all the excitement. Preferring to grow along stream banks in well-drained soils, this tree is native from New Brunswick to northern Arkansas. Its leaflets are downy, its bark is light gray to almost silver, and it has a band of fuzzy hairs along the upper margins of the leaf scars. Its a stunning tree to say the least. 

Sadly, it is a species in decline. As it turns out, the excitement surrounding this tree is due to the fact that finding large, robust adults has become a somewhat rare occurrence. Yet another casualty of the global movement of species from continent to continent, the white walnut is falling victim to an invasive species of fungus known scientifically as Sirococcus clavigignenti-juglandacearum

The fungus enters the tree through wounds in the bark and, through a complex life cycle, causes cankers to form. These cankers open the tree up to subsequent infections and eventually girdle it. The fungus was first discovered in Wisconsin but has now spread throughout the entire range of the tree. The losses in Wisconsin alone are staggering with an estimated 90% infection rate. Farther south in the white walnuts range, it is even worse. Some believe it is only a matter of time before white walnut becomes functionally extinct in areas such as the Carolinas. No one knows for sure where this fungus came from but Asia is a likely candidate.

A sad and all too common story to say the least. It was starting to look like I was not going to get a chance to meet this tree in person... ever. My luck changed a few weeks later. My friend Mark took us on a walk near a creek and forced us to keep our eyes on the canopy. We walked under a tree and he made sure to point out some compound leaves. With sunlight pouring through the canopy we were able to make out a set of leaves with a subtle haze around the leaf margins. We followed the leaves to the branches and down to the trunk. It was silvery. There we were standing under a large, healthy white walnut. The next day we stumbled across a few young saplings in some of our vegetation plots. All is not lost. I can't speak for the future of this species but I feel very lucky to have seen some healthy individuals. With a little bit of luck there may be hope of resistance to this deadly fungus. Only time will tell. 

Photo Credit: Dan Mullen (http://bit.ly/2br2F0Z)

Further Reading:
http://bit.ly/2b8GiMV

http://bit.ly/2aLUdMD

Pitcher's Thistle and the Dunes It Calls Home

Sand dunes are harsh habitats for any organism to make a living. They are hot, they are low in nutrients, water doesn't stick around for very long, and they can be incredibly unstable. Despite these obstacles, dunes around the world host rather unique floras comprised of plants well suited to these conditions. Sadly, we humans have been pretty good at destroying many of these dune habitats. This is especially true along the shores of the Great Lakes. To put this in perspective, I would like us to take a closer look at a special Great Lakes dune denizen. 

Meet Pitcher's thistle (Cirsium pitcheri). It is a true dune plant and is endemic to the shores of the upper Great Lakes. Its a rather lanky plant, often looking as if it is having a hard time supporting its own weight. Despite its unkempt look, adult plants can reach heights of 3 feet, which is quite impressive given where it lives. It is covered in silvery hairs, giving the plant a shiny appearance. These hairs likely protect the plant from the onslaught of sun, abrasive wind-blown sand, and desiccation. One of the benefits of growing in such inhospitable places is that historically speaking, Pitcher's thistle could grow with little competition. Individual plants grow for roughly 5 to 8 years before flowering. After seeds are produced, the plant dies. The seedlings are then free to develop without being shaded out. 

The last century or so have not been good to Pitcher's thistle. Shoreline development, altered disturbance regimes, and isolation of various populations have fragmented its range and reduced its genetic diversity. To make matters worse, its remaining habitat is still shrinking. Shoreline development has altered wave action that is vital to these dune habitats. Waves that once brought in new sediments and built dunes are largely carving away what's left. They are eroding at an alarming rate that even dune-adapted plants like Pitcher's thistle can't keep up with. Recreational use of these habitats adds another layer as heavy foot traffic carves deep scars into these dunes, furthering their demise. 

One silver lining in all of this is that dedicated researchers are paying close attention to the natural history of this species. They have discovered some fascinating things that will help in the recovery of this special plant. For instance, it has been observed that although trampling doesn't necessarily kill Pitcher's thistle, it does damage sensitive buds. This often results in plants developing multiple flower heads. Although this sounds like a benefit, researchers discovered that these damaged plants actually produce fewer viable seeds despite producing more flowers. 

Also, they have found that American goldfinches are playing a considerable role in its reproductive success. Despite the tightly clasping, spiny bracts that protect the seeds, goldfinches have been found to reduce seed production by 90% as they forage for food and the fluffy seed hairs for nest building. Evidence suggests that goldfinches are more likely to target small, isolated populations of Pitcher's thistle rather than large, contiguous patches. The reason for this is anyone's guess but it does suggest that they way around this issue is to supplement dwindling populations with new plants grown from seed. 

Without intervention, it is very likely that Pitcher's thistle would go extinct in the near future. Luckily, researchers and federal officials are teaming up to make sure that doesn't happen. Long term population monitoring is in place throughout its range and a sandbox technique has been developed for germinating and growing up new individuals to supplement wild populations. Through habitat restoration efforts, supplementing of existing and the creation of new populations, the future of this charismatic dune thistle has gotten a little bit brighter. It isn't out of the metaphorical woods but there is reason for hope. 

Photo Credit: [1] 

Further Reading: [1]

A Unique Case of Floral Mimicry

Pollination is one of the major advantages flowering plants have over the rest of the botanical tree. With a few exceptions, flowers have cornered this market. It no doubt has played a significant role in their rise to dominance on the landscape. The importance of flowers is highlighted by the fact that they are costly structures. Because they don't photosynthesize, all plants take a hit on energy reserves when it comes time to flower. Sepals, petals, pollen, nectar, all of these take a lot of energy to produce which is why some plants cheat the system a bit. 

Sexual mimicry is one form of ruse that has evolved repeatedly. The flowers of such tricksters mimic receptive female insects waiting for a mate. The evolution of such a strategy taps into something far deeper in the mind of animals than food. It taps into the need to reproduce and that is one need animals don't readily forego. As such, sexually deceptive flowers usually do away with the production of costly substances such as nectar. They simply don't need it to attract their pollinators. 

By and large, the world of sexual mimicry in plants is one played out mainly by orchids. However, there exists an interesting exception to this rule. A daisy that goes by the scientific name Gorteria diffusa has evolved a sexually deceptive floral strategy of its own. Native to South Africa, this daisy is at home in its Mediterranean climate. It produces stunning orange flowers that very much look like those of a daisy. On certain petals of the ray florets, one will notice peculiar black spots. From region to region there seems to be a lot of variation in the expression of these spots but all are textured thanks to a complex of different cell types. 

The spots may seem like random patterns until the flowers are visited by their pollinator - a tiny bee-fly known scientifically as Megapalpus nitidus. With flies present, one can sort of see a resemblance. This would not be a mistake on the observers part. Indeed, when researchers removed or altered these spots, bee-fly visitation significantly decreased. Although this didn't seem to influence seed production, it nonetheless suggests that those spots are there for the flies. 

When researchers painted spots on to non-textured petals, the bee-flies ignored those as well. It appears that the texture of the spots makes a big difference to visiting flies. What's more, although female flies visited the flowers, a majority of the visits were by males. It appears that the presence of these spots is keying in on the mate-seeking and aggregation behavior of their bee-fly pollinators. Further investigation has revealed that the spots even reflect the same kind of UV light as the flies themselves, making the ruse all the more accurate. This case of sexual mimicry is unique among this family. No other member of the family Asteraceae exhibits such reproductive traits (that we know of). Although it doesn't seem like seed production is pollinator limited, it certainly increases the chance of cross pollination with unrelated individuals.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2]

Parasitic Protection

Strangler figs are remarkable organisms. Germinating in the canopy of another tree, their roots gradually wrap around the host, growing down towards to forest floor. Once in the soil, the interwoven structure of the fig begins to grow and swell. Over time, the strangler fig does what its name suggests, it strangles the host tree. Strangling is bad news for the host, however, new research suggests that strangler figs may actually provide some benefit to larger host trees, at least for part of its life. 

Cyclones are a force to be reckoned with. Their punishing winds can quickly topple even the sturdiest of trees. This is exactly what happened in 2013 when Cyclone Oswald struck Lamington National Park in Australia. Many trees fell victim to this storm but not all. Survival was not random and an interesting pattern started to emerge when researchers began surveying the damage. 

The hollow center of an ancient strangler fig where its host tree once grew and has long since rotted away.  

The hollow center of an ancient strangler fig where its host tree once grew and has long since rotted away.  

They found that large trees hosting strangler figs survived the storm whereas those without were more likely to be uprooted. It appears that hosting these parasitic figs just might have some benefits after all. There are a handful of mechanisms with which strangler figs could be helping their hosts. First is that figs spanning multiple trees may provide stability for the host and its neighbors. Another could come in the form of additional leaf area. The canopy of both the fig and its host tree may help reduce the impact of the cyclone winds. Additionally, once they make it to the soil, the roots of the strangler fig may act as guy-wires, keeping the host tree from uprooting. Finally, The interwoven roots of the strangler fig may act as scaffolding, providing additional structural integrity to the host tree. 

More work will be needed to see which of these are the most likely mechanisms. The mere fact that this parasitic relationship might not be so one-sided after all is quite interesting. What's more, by keeping large tree species alive through devastating cyclone events, the figs are essentially keeping legacy trees alive that can then reseed the surrounding forest. This could explain why host trees have not evolved any obvious mechanism to avoid strangler fig infestation. 

Further Reading: [1]

The Enemy of My Enemy is My Friend

Spotted Knapweed (Centaurea maculosa)

Spotted Knapweed (Centaurea maculosa)

Plants produce a lot of chemicals. I mean a lot. Some of these are involved in day to day functions like growth and reproduction. The function of others can be a bit less obvious. These are often referred to as secondary compounds as they are not directly involved in growth or reproduction. Some of these chemicals are toxic to other plants. We call these compounds allelochemicals. Producing allelochemicals can give some plants a competitive advantage by knocking back their neighbors. However, like most things in ecology, this situation isn't always that simple. 

Take the example of spotted knapweed (Centaurea maculosa). This nasty invader is wreaking havoc on plant communities throughout western North America. It wages its war under the soil where it releases a chemical from its roots called "catechin." This chemicla kills native plants, especially native grasses growing nearby. This competitive advantage can lead to total dominance of spotted knapweed in many areas where it quickly rises to monoculture status. 

Silky lupine (Lupinus sericeus)

Silky lupine (Lupinus sericeus)

Not all native plants are equally susceptible to spotted knapweeds effects. Two native forbs stand out above the rest in being able to cope with the allelochemicals released by spotted knapweed. Enter silky lupine (Lupinus sericeus) and blanketflower (Gaillardia grandiflora). Where these plants occur alongside spotted knapweed, other natives seem to do a bit better. This made researchers curious. What was it about these two species?

Blanketflower (Gaillardia grandiflora)

Blanketflower (Gaillardia grandiflora)

As it turns out, both of these natives secrete their own chemicals. These don't act as allelochemicals though. Instead, it was found that they neutralize the detrimental effects of the catechin. In doing so, both the lupine and the blanketflower create a safe zone for other natives to reestablish. This could be good news as it hints at new ways of approaching certain plant invasions. More work needs to be done to see how well this situation plays out in a natural setting but the evidence is tantilizing to say the least!

Photo Credits: [1] [2] [3]

Further Reading: [1]

Who Pollinates the Flame Azalea?

By and large, one of the most endearing aspects of doing research in Southern Appalachia are the myriad Ericaceous species you inevitably encounter. Throughout the growing season, their flowers paint the mountainsides in a symphony of color. One of my favorite species to encounter is the flame azalea (Rhododendron calendulaceum).

This shrubby spectacle is a common occurrence where I work and its flowers, which range from bright yellows to deep orange and even red, put on a show that lasts a couple of weeks. It's not just me who enjoys the flowers either. Countless insects can be seen flitting to and from each blossom, sucking up rich reserves of nectar and pollen. It is interesting to watch a bee visit these flowers. Their outlandishly long anthers and style seem to be mostly out of reach for these smaller pollinators.

Bees attempting to grab some pollen look outlandishly clumsy in their attempts. What's more, small insects only seem to be able to get either nectar or pollen on any given visit. Rarely if ever do they make contact with the right floral parts that would result in effective pollination. Indeed, I am not the only person to have noticed this. Despite being visited by a wide array of insect species, only large butterflies seem capable to pollinating the flame azaleas stunning blooms.

The mechanism by which this happens is quite interesting. The reason small insects do not effectively pollinate these flowers has to do with the position of the anthers and style. Sticking far out from the center of the flower, they are too widely spaced to be contacted by small insect visitors. Instead, the only insects capable to transferring pollen from anthers to stigma are large butterflies. What is most strange about this relationship is that it all hinges on the size of the butterflies wings.

Only two species of butterfly, the eastern tiger swallowtail and the orange spangled fritillary, were observed to possess the right wing size and placement to achieve effective pollination for the flame azalea (though I suspect other larger species do so as well). This is quite unique as this is the only report of wing-mediated pollen transfer in northern temperate regions. The research team that discovered this noted that pollen transfer was greatest with the eastern tiger swallowtail, which is a voracious nectar hunter during the summer months.

Despite their popularity in pollinator gardens, butterflies are often considered poor pollinators. That being said, pollen transfer via wing surfaces has been a largely overlooked mechanism of pollination. Coupled with a handful of reports from tropical regions, this recent finding suggests that we must take a closer look at plant pollinator interactions, especially for plants that produce flowers with highly exerted anthers and stigmas. As the authors of the study put it, "transfer of pollen by butterfly wings may not be a rare event."

Photo Credit: [1]

Further Reading: [1]

Taxonomic Discoveries: My Version of the Butterfly Effect

Witnessing a giant swallowtail (Papilio cresphontes) in flight is an incredible experience. It is the largest species of butterfly found in the US and Canada and with its yellow and black wings, it is impossible not to take pause and watch it flutter around the canopy. I will never forget the first time I saw one as a child. It was one of those moments that solidified my obsession with the natural world. Fast forward a few decades and now I can't help but ponder what kind of gardening I would need to do to attract these incredible insects to my yard. What I discovered surprised me to say the least. I had to plant something in the citrus family. 

We are all familiar with the fruits of various Rutaceae. This family contains the genus Citrus, providing humanity with oranges (C. × sinensis), lemons (C. × limon), grapefruits (C. × paradisi), and limes (mostly C. aurantifolia). These are largely tropical and subtropical trees, struggling to hang on anywhere temperatures dip below freezing regularly. How on Earth was a butterfly whose larva specialize on this family flitting around in temperate North America? What's more, reports place this species as far north as southern Quebec. I was obviously out of the loop on the taxonomic affinities of this family.

A little detective work turned up some surprising results. Temperate North America does in fact have some representatives of the citrus family. They are a far cry from an orange tree but they are nonetheless relatives. This inquiry actually solved a bit of trouble I was having with some riparian trees in my neck of the woods. As some of you probably know, trees are not a strong point of mine. I had encountered a few small woody things with compound leaves of three and dense clusters of greenish flowers. At first I thought I had found a rather robust poison ivy specimen but closer inspection revealed that wasn't the case.

Instead I had stumbled across something new for me - a common hoptree (Ptelea trifoliata). This cool looking tree is one of the giant swallowtails larval host trees, making it a member of -(you guessed it)- the citrus family. More often this small tree grows like a shrub with its tangle of multiple branches but they can reach some impressive heights, relatively speaking of course. Trees topping out at a height of 5 meters are not unheard of. Another common name of this tree - wafer ash - hints at its superficial similarity to a Fraxinus. Its compound leaves and wafer-like samaras are a bit of a curve ball for northerners like myself. It has a rather wide and patchy distribution throughout North America, and many subspecies/varieties have been named.

Common Hoptree (Ptelea trifoliata )

Common Hoptree (Ptelea trifoliata )

The other bit of this taxonomic journey involves another small tree, although this time I was better acquainted. Another host for the giant swallowtail is the prickly ash (Zanthoxylum americanum). It is interesting to note that both of these northern host trees superficially resemble ashes but I digress. The prickly ash is also small in stature and is most often found in thickets consisting of its own kind. As its common name suggests, you wouldn't want to go barreling through said thickets unless you wanted to donate some blood. It is well defended by sharp prickles on its stems. It does produce fruit but they are rather small and berry-like (technically follicles) and are distributed far and wide by birds.

Prickly Ash ( Zanthoxylum americanum )

Prickly Ash ( Zanthoxylum americanum )

Both trees are rather aromatic. They produce volatile oily compounds like most of the family, making them smell quite pleasant. Their small size makes them interesting specimen trees for anyone looking for something unique to put in a native landscape. What's more, they host a variety of other larvae as well, including those of the spicebush swallowtail butterfly (P. troilus).

Together, these two species are the most northerly representatives of the citrus family, making them quite special indeed. I am happy that my interest in attracting giant swallowtails to my property resulted in a fascinating dive into the geography of this interesting family.

Photo Credits: [1] [2] [3]


Further Reading: [1] [2]

The Grasstree of Southwestern Australia

Southwestern Australia is home to one of the world's most unique floras. A combination of highly diverse, nutrient-poor soil types, bush fires, and lots of time have led to amazing adaptive radiations, the result of which are myriad plant species found nowhere else in the world. One of the most unique members of southwestern Australia's flora is the grassplant (Kingia australis). Like all plants of this region, it is one hardy species.

The taxonomic history of the grassplant has been a bit muddled. As its common name suggests, it was once thought to be a member of the genus Xanthorrhoea, however, its resemblance to this group is entirely superficial. It has since been placed in the family Dasypogonaceae. Along with three other genera, this entire family is endemic to Australia. Growing in southwestern Australia presents lots of challenges such as obtaining enough water and nutrients to survive and for the grassplant, these were overcome in some fascinating ways.

The way in which the grassplant manages this is quite incredible. Its trunk is not really a true trunk but rather a dense cluster of old leaf bases. Within this pseudotrunk, the grassplant grows a series of fine roots. Research has shown this to be an adaptation to life in a harsh climate. Because water can be scarce and nutrients are in short supply, the grassplant doesn't take any chances. Water hitting the trunk is rapidly absorbed by these roots as are any nutrients that come in the form of things like bird droppings.

Coupled with its underground roots, the grassplant is able to eek out a living. That being said, its life is spent in the slow lane. Plants are very slow growing and estimates place some of the larger individuals at over 600 years in age. Its amazing how some of the harshest environments can produce some of the longest lived organisms.

As you can probably imagine, reproduction in this species can also be a bit of a challenge. Every so often, flower clusters are produced atop long, curved stems. Their production is stimulated by fire but even then, with nutrients in poor supply, it is not a frequent event. Some plants have been growing for over 200 years without ever producing flowers. This lifestyle makes the grassplant sensitive to disturbance. Recruitment is limited, even in good flowering years and plants take a long time to mature. That is why conservation of their habitat is of utmost importance.

Photo Credits: [1] [2]

Further Reading: [1] [2]

The Mighty 'Ama'u

We tend to think of ferns as fragile plants, existing in the shaded, humid understories of forests. This could not be farther from the truth. Their lineage arose on this planet some 360 million years ago and has survived countless extinctions. In truth, they exhibit a staggering array of lifestyles, each with its own degree of adaptability. Take the Hawaiian tree fern, Sadleria cyatheoides for example.

Known in Hawai'i as the 'Ama'u, this tree fern is one of the first species to colonize the barren lava flows that make the Big Island so famous. This is an incredibly harsh landscape and many challenges must be overcome in order to persist. This does not seem to be an issue for the 'Ama'u. It is just as much at home in these water-starved habitats as it is in wetter forests. It is easily the most successful species in this genus, having colonized every island in the archipelago.

Much of its success has to due with a part of its life cycle that is much less obvious to us - the gametophyte stage. The tree fern we see is only half of the story. It is the spore-producing phase conveniently referred to as the sporophyte. When a spore finds a suitable site for germination, it grows into the other half of the life cycle, the gametophyte. This minute structure looks like a tiny green heart and it houses the reproductive organs of the plant. When water is present, male gametophytes release their flagellated sperm, which swim around until they find a female gametophyte to fertilize. Once fertilized, the resulting embryos will then grow into a new tree fern and start the cycle anew.

What sets the 'Ama'u apart from its rarer cousins is the fact that its gametophyte appears to be quite capable of both outcrossing and self-fertilization. Outcrossing, of course, promotes genetic diversity, however, the ability to self-fertilize means that a new plant can grow from only a single spore. This is super advantageous when it comes to colonizing new habitats. Its cousins seem to lack this ability to self-fertilize successfully, restricting them to more localized areas. Taken together, I think it's safe to say that the 'Ama'u is one tough cookie. 

Photo Credits: [1] [2]

Further Reading: [1] [2]

 

A Fern Unchanged

Ferns are old. Arising during the late Devonian period, some 360 million years ago, ferns once dominated the land. These ancient ferns were a bit different than the ferns we know today. It wasn't until roughly 145 million years ago, during the late Cretaceous period, that many extant fern families started to appear. However, a recent fossil discovery shows that at least one familiar fern was hanging out with dinosaurs as far back as 180 million years ago!

A team of scientists in Sweden recently unearthed an exquisitely preserve fossil of a fern from some early Jurassic deposits. Usually the fossilization process does not preserve very fine details, especially not at the cellular level, but that is not the case for this fossil. Falling into volcanic hydrothermal brine, the fern quickly mineralized. The speed at which the tissues of the fern were replaced by minerals preserved details that scientists usually only dream about. Clearly visible in the fossilized stem are subcellular structures like nuclei and even chromosomes in various stages of cell division!

 

source

source

Using sophisticated microscopy techniques, the team was able to analyze the properties of the nuclei undergoing division. What they discovered is simply amazing. The number of chromosomes as well as other properties of the DNA matched a fern that is quite common in eastern North America and Asia today. This fossilized fern, as far as the team can tell, is a cinnamon fern (Osmundastrum cinnamomeum). Based on the fossil evidence, cinnamon ferns were not only around during the early Jurassic, they have remained virtually unchanged for 180 million years. Talk about a living fossil!

Further Reading: [1]

1,730 New Plant Species Were Described in 2016

Manihot debilis

Manihot debilis

The discovery of a new animal species is celebrated the world over. At the same time, plants are lucky to ever make headlines. This is a shame considering that plants form the backbone of all terrestrial ecosystems. The conversation is starting to change, however, as more and more people are waking up to the fact that plants are fascinating organisms in their own right. In a recent addition of Kew Garden's State of the World's Plants, they report on 1,730 newly described plant species from all over the world.

Begonia rubrobracteolata

The discovery of these new plants species is truly a global event. Central and South America, Africa, tropical Asia, and Madagascar saw the addition of many intriguing taxonomic novelties. For instance, Malaysia can now add 29 new species of Begonia to their flora. Africa can now boast to be the home of the largest species of Bougainvillea in the world. Standing at 3 meters in height, it is an impressive sight to behold. Madagascar was particularly fruitful (pun intended), adding 150 new species, subspecies, and varieties of Croton all thanks to the diligent work of the late Alan Radcliffe-Smith. 

Commicarpus macrothamnum Photo Credit: Ib Friis

Commicarpus macrothamnum Photo Credit: Ib Friis

One of the most exciting finds from Madagascar was a new genus of climbing bamboos named Sokinochloa. So far only 7 species have been named. The key to unlocking the diversity of this new genus lies in their flowers, which are not produced on a regular basis. Like many bamboos, the Sokinochloa produce flowers at intervals of 10 to 50+ years. The new discoveries did not consist entirely of small understory herbs either. Some of those 1,730 plants were massive forest trees.

Sokinochloa australis

Sokinochloa australis

One of these new tree species is Africa's first endemic species of Calophyllum (Calophyllaceae). They were discovered during a survey for a uranium mine and, with fewer than 10 mature individuals, are considered critically endangered. Expeditions in Central America and the Andes turned up 27 new tree species in the genus Sloanea (Elaeocarpaceae) as well as 10 new species Trichilia, a genus of trees belonging to the mahogany family (Meliaceae).

The list could go on and on. Even more exiting is the fact that 2016 wasn't a particularly exceptional year for new plant discoveries. An estimated 2,000 new plant species are discovered on an annual basis. We aren't even close to grasping the full extent of plant diversity on this planet. What plants desperately need, however, is more attention. More attention leads to more scrutiny, more scrutiny leads to better understanding, and better understanding leads to improved conservation efforts. We could be doing a lot better with conservation efforts if we considered the plants whose very existence is essential for all life as we know it.

Barleria mirabilis Photo Credit: Quentin Luke

Barleria mirabilis Photo Credit: Quentin Luke

Tibouchina rosanae Photo Credit: W Milliken

Tibouchina rosanae Photo Credit: W Milliken

Englerophytum paludosum Photo Credit: Xander van der Burgt

Englerophytum paludosum Photo Credit: Xander van der Burgt

You can download your own copy of the State of the World's Plants by clicking here

All photos thanks to the Royal Botanical Gardens at Kew unless otherwise noted.

Can Plants "Hear" Running Water?

A recently published study suggests that some plants are capable of using sound to locate water. That's right, sound. Although claims of plants liking or disliking certain types of music still belong in the realm of pseudoscience, this research does suggest that plants may be capable of detecting vibrations in an interpretable way. 

To test this idea, Dr. Monica Gagliano of the University of Western Australia germinated pea seeds in specially designed mazes. Each maze looked like an upside-down Y. At the end of each arm, she devised a series of treatments that would force the pea seedlings to "choose" their desired rooting direction. In some treatments she used standing water coupled with water running through a tube. In others she simply played the sounds of running water against the sound of white noise.

The peas were allowed to grow for five days and afterwards were checked to see which direction their roots were growing. Amazingly, the peas seemed to be able to distinguish the sound of actual running water even when there was no moisture gradient present. Peas given the option of sitting or running water in a tube grew their roots towards the tube a majority of the time. Again, this was in the absence of any sort of water gradient in order to eliminate the chances that the peas were simply honing in on humidity.

Interestingly, plants that were played the sound of running water and white noise through speakers seemed to do what they could to avoid the noise. Although the research did not investigate why the peas had an aversion to the recordings, Dr. Gagliano suspects that it might have something to do with the low frequency magnetic currents emitted by the speakers. Previous research has shown that even weak localized magnetic fields are enough to disrupt the structure of developing root cells. 

All of this taken together paints a fascinating picture of plant sensory capabilities. One should take note, however, that the sample sizes used in this experiment were quite small. More, larger experiments will be needed to fully understand these patterns as well as the mechanisms behind them. Still, these findings shed light on cases in which tree roots seem to be so adept at finding sewer pipes, even in the absence of leaks. It also lends to the findings that the roots of trees such as scrub oaks and box elders will often opt for more stable and reliable sources of ground water over the fluctuating uncertainty of nearby stream sources. Finally, there is something to be said that we share as many as 10 of the 50 genes involved in human hearing with plants.

Our understanding of plant sensory capabilities is really starting to blossom (pun intended). Plants aren't the static, sessile organisms so many make them out to be. They are living, breathing organisms fighting for survival. I, for one, am excited for what new discoveries await. 

Photo Credits: [1] [2]

Further Reading: [1] [2]

Meet the Catawbas

A romp through the North American countryside this time of year is quite enjoyable. So many plants are coming into bloom and life abounds everywhere you look. One particularly lovely sight to see is a large stand of catawba trees in full bloom. With their stunning display of large flowers all clustered onto spikes, it is no wonder why this genus has become such a popular landscaping choice. 

The genus name Catalpa is actually a derivation of the Muscogee word "kutuhlpa," which translates to "winged head". This is probably in reference to the winged seeds that emerge from the long, bean-like pods. Either way, these trees have an interesting story to be told that goes far beyond their horticultural use. 

North America has two native species of catawba, Catalpa bignonioides and Catalpa speciosa. When discovered by European botanists, the former was growing in a narrow swath of the southeast and the latter in an even narrower range near the confluence of the Ohio and Mississippi Rivers. As many of you realize, these trees do quite well when planted outside of these areas. This fact is not lost on botanists and ecologists and indeed many have speculated that the genus was undergoing a range contraction long before Europeans made it to the continent. An archaeological dig in West Virginia added some credence to this theory when evidence of Catalpa speciosa was found far from where this tree was originally thought to grow. 

Catawbas are the sole host for the larvae of the catawba sphinx moth (Ceratomia catalpae). Large infestations of these caterpillars can even defoliate the trees. Because of this, catawbas have evolved an interesting defense mechanism. The leaves of catawba have what are called extrafloral nectaries. These are glands that excrete sugary nectar. The nectar attracts ants. When the leaves sense damage from the catawba sphinx moth caterpillars, production of nectar increases dramatically. This focuses the ants attention towards leaves that are in need of defense. Because ants are so apt to defend a reliable food source, they quickly go to work on driving away the caterpillars. 

Photo Credit: [1]

Further Reading: [1] [2] [3] [4] [5]

Arums, Orchids and Vines, Oh My!

This week we head into the forests of Illinois to see what late spring botany we can find. This is one of the coolest times of the year to look for plants in temperate North America. 

Producer, Writer, Creator, Host:
Matt Candeias (http://www.indefenseofplants.com)

Producer, Editor, Camera:
Grant Czadzeck (http://www.grantczadzeck.com)

Twitter: @indfnsofplnts

Facebook: http://www.facebook.com/indefenseofplants

Patreon: http://www.patreon.com/indefenseofplants

Tumblr: http://www.tumblr.com/indefenseofplants
_________________________________________________________________

Music by: 
Artist: Lazy Legs
Track: Molasses
Album: Lazy Legs EP
http://lazylegs.bandcamp.com

Wet Prairies and the White Lady's Slipper

This week we visit a wet prairie in search of the white lady's slipper orchid (Cypripedium candidum). This is a unique habitat type full of incredible plants and we meet many of them along the way. Special thanks to Paul Marcum (http://bit.ly/2r6SG8s) in making this episode possible! 

If you would like to support orchid conservation efforts here in North America, consider purchasing a stick over at http://www.indefenseofplants.com/shop/

Producer, Writer, Creator, Host:
Matt Candeias (http://www.indefenseofplants.com)

Producer, Editor, Camera:
Grant Czadzeck (http://www.grantczadzeck.com)

Twitter: @indfnsofplnts

Facebook: http://www.facebook.com/indefenseofpl...

Patreon: http://www.patreon.com/indefenseofplants

Tumblr: http://www.tumblr.com/indefenseofplants

_________________________________________________________________

Music by: 
Artist: Lazy Legs
Track: Chain of Pink
Album: Chain of Pink
http://lazylegs.bandcamp.com

Exploring a Sand Prairie

In this exciting episode, In Defense of Plants explores the fascinating botanical communities growing in a sand prairie in central Illinois. The unique soil conditions makes this place a hotbed for rare plants. Many of these species are disjuncts from further west. 

The story of this place began some 14,000 years ago as glacial outwash from the long gone Lake Chicago blew across the landscape and piled into great sand dunes. Join us for a fascinatingly beautiful botanical adventure. 

CORRECTION: The cactus is not Optuntia fragilis, it is actually the eastern prickly pear (Opuntia humifusa)... Woops!

Producer, Writer, Creator, Host:
Matt Candeias (http://www.indefenseofplants.com)

Producer, Editor, Camera:
Grant Czadzeck (http://www.grantczadzeck.com)

Facebook: http://www.facebook.com/indefenseofpl...

Patreon: http://www.patreon.com/indefenseofplants

Tumblr: http://www.tumblr.com/indefenseofplants

Twitter: @indfnsofplnts
_________________________________________________________________

Music by: 
Artist: Lazy Legs
Track: Sparks
Album: VISIONDEATH
http://lazylegs.bandcamp.com

America's Trees are Moving West

Understanding how individual species are going to respond to climate change requires far more nuanced discussions than most popular media outlets are willing to cover. Regardless, countless scientists are working diligently on these issues each and every day so that we can attempt to make better conservation decisions. Sometimes they discover that things aren't panning out as expected. Take, for instance, the trees of eastern North America.

Climate change predictions have largely revolved around the idea that in response to warming temperatures, plant species will begin to track favorable climates by shifting their ranges northward. Of course, plants do not migrate as individuals but rather generationally as spores and seeds. As the conditions required for favorable germination and growth shift, the propagules that end up in those newly habitable areas are the ones that will perform the best.

Certainly data exists that demonstrates that this is the case for many plant species. However, a recent analysis of 86 tree species native to eastern North America suggests that predictions of northward migration aren't painting a full picture. Researchers at Purdue University found that a majority of the species they looked at have actually moved westward rather than northward.

Of the trees they looked at, 73% have increased their ranges to the west whereas only 62% have increased their ranges northward. These data span a relatively short period of time between 1980 and 2015, which is even more surprising considering the speed at which these species are moving. The team calculated that they have been expanding westward at a rate of 15.4 km per decade!

These westward shifts have largely occurred in broad-leaf deciduous trees, which got the team thinking about what could be causing this shift. They suspected that this westward movement likely has something to do with changes in precipitation. Midwestern North America has indeed experienced increased average rainfall but still not nearly as much as eastern tree species are used to getting in their historic ranges. Taken together, precipitation only explains a small fraction of the patterns they are observing.

Although a smoking gun still has not been found, the researchers are quick to point out that just because changes in climate can not explain 100% of the data, it nonetheless plays a significant role. It's just that in ecology, we must consider as many factors as possible. Decades of fire suppression ,changes in land use, pest outbreaks, and even conservation efforts must all be factored into the equation.

Our world is changing at an ever-increasing rate. We must do our best to try and understand how these myriad changes are going to influence the species around us. This is especially important for plants as they form the foundation of every major terrestrial ecosystem on this planet. As author John Eastman so eloquently put it "Since plants provide the ultimate power base for all the food and energy chains and webs that hold our natural world together, they also form the hubs of community structure and thus the centers of our focus."

Further Reading:  [1]

A Beautiful and Bizarre Gentian

There is something about gentians that I am drawn to. I can't quite put my finger on it but it definitely has something to do with their interesting pollination strategies. One of the coolest gentian species I have ever met grows in the mountainous regions of western North America.

Meet Frasera speciosa a.k.a. the monument plant (a.k.a. elkweed). It is only one of 14 species in the genus. This fascinating species (as well as its relatives) lives out most of its life as a rosette of large, floppy leaves. The monument plant is what is known as a "monocarpic perennial", meaning it lives for many years as a rosette before flowering once and dying. It has been recorded that some individuals can be upwards of 30 years old by the time they flower!

This reproductive strategy brings with it a specific set of challenges but yet, if balanced correctly, offers many advantages. For starters, if you only flower once in a life time, you best make it count. The good news is, if flowering events are rare and widely spaced, this is a good strategy for avoiding herbivores. Such an irregular reproductive lifestyle means that the likelihood of a flowering population getting munched on is greatly reduced.

The same goes for seeds. If setting seed is a rare and widely spaced event, the likelihood of seed predation is also reduced. This is what is known as predator avoidance behavior. While it is not quite understood how plants synchronize flowering (though environmental conditions do play a role), it has been found that, for at least some populations, it alternates in intervals of 3 and 7 years. In essence, each flowering event can be seen as mast event. This keeps the overall impact of any potential herbivores and seed predators to a minimum.

This synchronous flowering strategy can also be beneficial for insuring cross pollination. The flowers are large and seemingly quite attractive to many different species of pollinators. By flowering all at once, a population is offering a tempting bonanza for pollinators that ensures many visits to each flower, thus increasing the chances of reproductive success. Since each individual plant invests all of its collective energy into a single flowering event, more energy is allocated to producing flowers and seed than if it flowered year after year.

The interesting habits of this plant's lifestyle don't end there. Each plant is essentially a pretty awesome parent! It has been found that seeds that are buried under the decomposing remains of a parent plant not only germinate better but the resulting seedlings also have a much higher rate of survival. This is good news for two big reasons.

For one, the decomposing remains enrich the surrounding soil while also creating a humid micro climate that is very conducive to growth. Second, the fact that they all germinate and grow relatively close to the parent plant, means that the density of young plants closely mimics that of the parental population. If the seeds were to be dispersed great distances from each other, it would be much more difficult to synchronize a flowering event and to ensure sufficient pollination. This way, entire populations grow up together in this nursery made from the remains of their parents. This is such a cool genus and I hope you get the chance to meet one for yourself.

Further Reading: [1] [2] [3] [4] [5]
 

Not All Pitchers Are Equal: How Prey Capture Has Driven Speciation in the genus Nepenthes

Species of the genus Nepenthes are as bizarre as they are beautiful. Known the world around for their carnivorous lifestyle, these plants looks like something out of a macabre art exhibit. It is easy to get caught up in this beauty. I often find myself lost in thought while staring at full grown specimen. How did this genus come to be? Why are they so diverse? What is going on with the morphology of these plants?

Nepenthes hail from nutrient poor habitats, which has driven them to supplement their growth with nutrients gained via the breakdown of a variety of organisms. The business ends of a Nepenthes are their pitchers. We get so caught up in the bewildering diversity of shapes, colors, and sizes that we often overlook them as the anatomical marvels of evolution that they truly are. Whereas the main body of these plants often look quite similar among different species, it's the pitchers that really allow us to separate them out as distinct species. Pitcher morphology not only gives us a convenient means to identify these plants, research is now showing that the structure of these pitchers is likely to be the driving force in their evolution. 

Let's back up for a second. Before we get to the subject of adaptive radiation, we should take a closer look at the anatomy of these plants. To put it simply, the pitchers of Nepenthes are actually leaves, albeit highly modified versions. What we readily recognize as the photosynthetic leaves of a Nepenthes plant are actually modified leaf bases or petioles. Over evolutionary time, these bases have flattened to increase the amount of surface area available for photosynthesis.

From the tip of each of these "leaves" is produced a tendril. Gradually this tendril will elongate and the tip starts to swell. This tip will eventually become the pitcher. The pitchers themselves are highly modified leaves. They are some of the most specialized leaves in all of the plant kingdom. As the tip grows larger, it becomes clear that there is a distinctive lid apparatus. Once the pitcher is fully mature, this lid pops open revealing the death trap filled with digestive fluids.

As if producing pitchers wasn't cool enough, each species of Nepenthes produces two distinct forms - lower pitchers, which are produced by young plants as well as on mature plants near the ground, and upper pitchers, which are produced up on the climbing stems as they vine through the canopy. The upper and lower pitchers look radically different from one another to the point that one may easily confuse them for different species. The reason for such stark differences has to do with the type of prey captured. Lower pitchers are generally larger and can capture prey that crawls along the forest floor. Upper pitchers tend to be more slender and most often capture flying insects as well as other creepy crawlies hanging out in the forest canopy.

The key to the success of these traps seems pretty straight forward - insects attracted by bright colors and sweet nectar land on the traps and fall to their death. Certainly this holds true throughout the genus, however, there are at least two major variations on this theme and a handful of bizarre mishmashes. As the lid of a Nepenthes pitcher starts to open, a ring of tissue called the peristome unfurls. The shape and color varies wildly between species and this has to do with the methods in which they capture their prey. These variations are the key to the amazing diversity of Nepenthes we see throughout the range of this genus.

Nepenthes vogelii

Nepenthes vogelii

The first of the three strategies is referred to as the 'insect aquaplaning' strategy. Insects walking around on the peristome of the pitcher find it hard to get a foothold. These are species such as N. raja, N. ampullaria, and N. bicalcarata (just to name a few). The slipperiness of the peristome of these species is further enhanced when humidity is high. Considering how much it rains in these habitats, it is no wonder why capture efficiency is often as high as 80%. Although there is some variation on this theme, pitchers that utilize the insect aquaplaning strategy often lack waxy cells on the interior of the pitcher walls.

Slippery pitcher walls are the second strategy that Nepenthes have converged upon. These are species such as N. diatas, N. mirabilis, and N. alata (again, just to name a few) Insects attracted to the pitchers are often lured in by sweet nectar. Once they cross the lip of the pitcher, prey find it hard to hang on and inevitably fall inside. Once this happens, waxy cells lining the interior walls make it impossible for anything to climb back out. It should be mentioned that a slippery peristome and waxy pitcher walls are not mutually exclusive. That being said, there are clear trends among species that show a reduction in waxy cells as peristome size and slope increases.

This brings us to the oddballs. There are species like N. lowii, whose pitchers function as a toilet bowl for shrews, and N. aristolochioides, whose pitchers seemed to have abandonded both strategies and now function as light traps similar to what we see in Darlingtonia. Regardless of their strategy, the diversity in trapping mechanisms appear to be the driving force behind the bewildering diversity of Nepenthes

Nepenthes aristolochioides

Nepenthes aristolochioides

All of the evidence taken together shows that prey capture is at the core of this radiation. There seems to be incredibly strong selective pressures that result in strong divergence in pitcher morphology. The disruptive selection that seems to be driving a wedge between the insect aquaplaning strategy and the waxy wall strategy may have its roots in reducing competition. Nutrients are low and competition for food is high. Different Nepenthes species could be evolving to capture different kinds of prey. Even closely related species such as N. ampullaria, N. rafflesiana, N. mirabilis, N. albomarginata, and N. gracilis all seem to occupy their own unique spot on the spectrum of prey capture strategy.

It could also be that Nepenthes are responding to the specific characteristics of the habitats in which they are found. Those inhabiting drier sites may favor the waxy wall strategy whereas those living in wetter habitats tend to favor the slippery peristome. More work needs to be done to investigate where and how these different strategies are maximized. Until then, I think it is safe to say that the diversity of this incredible genus has a lot to do with obtaining food. 

Photo Credits: [1] 

Further Reading:

[1] [2] [3]

 

Meet the Fringe Tree

The fringe tree (Chionanthus virginicus)

Coming across a fringe tree in full bloom is a spectacular experience. Known scientifically as Chionanthus virginicus, some may surprised to realize that this is a native tree to eastern North America. Though it has found its way into the horticultural trade, it is still not terribly common. Today I would like to celebrate this interesting tree as well as bring to your attention some alarming facts that might threaten its existence in the wild. 

Fringe tree can be found growing wild in the understories and edges of forests throughout eastern North America. It tends to be quite a rarity on the edges of its range, hitting its densest distribution in a handful of the southeastern states. Individual trees are either male or female but both produce quite a floral display. They produce dense clusters of wispy white flowers. They do produce a slight fragrance but one has to get up close and personal with the branches to really appreciate it. 

The fringe tree hails from the same family as the ash trees - Oleaceae. Unfortunately, this taxonomic relationship may be bad news for the fringe tree in the long run. At least one study has shown that fringe trees can serve as hosts for the emerald ashborer. The sample size on this study was quite low, only 4 of 20 adult trees showed signs of completed larval development and adult emergence holes. Still, this is enough cause for concern. Perhaps the one thing fringe tree has going for it are its sparse populations, making it harder to detect by these wood boring beetles. Only time and a lot of attention will tell. 

Regardless, I think this is a wonderfully underrated tree for a native eastern North America landscape. It is rather hardy and puts on quite a show every spring. As the Grumpy Gardener so eloquently put it, "It’s tougher than dogwood, more dependable than saucer magnolia, longer-lived than cherry, and smells better than stinky Bradford. And it’s beautiful." I couldn't agree more. 

Photo Credits: [1] [2] 

Further Reading: [1] [2]