The Celery-Topped Conifers

I am only just starting to fully appreciate the diversity in form and habit exhibited by the gymnosperm lineages alive today. What I once thought of as a unidimensional group of plants is proving to be wonderfully diverse, despite being overshadowed by the angiosperms. For instance, imagine my surprise when I first laid eyes on a member of the genus Phyllocladus.

At first glance, these weird conifers look more like a broad-leaf angiosperm. This similarity is superficial, of course. Before we get to why they look the way they do, it is worth considering this group from a as a whole. The genus Phyllocladus comprises roughly 5 species spread out among New Zealand, Tasmania, and Malesia. They are somewhat variable in form but usually settle out somewhere between a good sized shrub and a medium sized tree. Where exactly this genus of oddball gymnosperms fits on the tree of life is subject to some debate.

Phyllocladus aspleniifolius

Phyllocladus aspleniifolius

Phyllocladus trichomanoides

Phyllocladus trichomanoides

For many years after its initial description, Phyllocladus was placed in a family of its own - Phyllocladaceae. Subsequent molecular work has only managed to add to the confusion. Despite its unique morphological characteristics, some authors feel this genus fits nicely into the family Podocarpaceae. At least one other study suggests that it doesn’t belong in Podocarpaceae but rather is situated as sister to the family. By the looks of it, this will not be cleared up any time soon. So, for now, let’s focus in on why these plants are so strange.

For starters we have the “leaves.” I place the word ‘leaves’ in quotes because they are not true leaves. The correct term for these structures are phylloclades (hence the generic name). A phylloclade is a flattened projection of a branch that takes on the form and function of a leaf. What we know of as leaves have been greatly reduced in the genus Phyllocladus. If you want to see them, you must look closely at the tips of the phylloclades. Early on in their development, the leaves exist as tiny brown scales. These scales are gradually lost over time as they serve no function for the plant.

Phyllocladus alpinus

Phyllocladus alpinus

Phyllocladus hypophyllus

Phyllocladus hypophyllus

Though no one has tested this directly (that I am aware of), the evolution of phylloclades over leaves likely has to do with energy conservation in one form or another. Why produce stems and leaves when you can co-opt stem-like structures to do the work for you? Oddly enough, some suggest that to consider them stems in the truest sense of the word is erroneous. Morphologically speaking, they share traits that are intermediate between branches and stems. However, I am going to need to do more homework before I feel comfortable elaborating on this point.

Only when it comes time for reproduction does their place among the gymnosperms become readily apparent, that is before the ovules are fertilized. All members of the genus Phyllocladus produce cones. Male cones are tiny, cylindrical structures located at the ends of their side branches whereas female cones are clustered into groups along the axils or margins of the phylloclades. Once fertilized, however, these plants offer another point of confusion for the casual observer.

The fleshy “fruits” of  Phyllocladus aspleniifolius

The fleshy “fruits” of Phyllocladus aspleniifolius

Phyllocladus is yet another genus of conifers that has converged on a fruit-like seed dispersal strategy. As the seed cones mature, the scales gradually swell and become berry-like. Poking out of the bright red and/or white aril is a single seed. These fleshy arils function in a similar way to fruit in that they attract birds, which then consume them, dispersing the seeds later on in their feces.

Another intriguing aspect of their morphology occurs below ground. The roots of this genus form nodules, which provide a home for bacteria that specializing in fixing atmospheric nitrogen. In return for a home and some carbohydrates from photosynthesis, these bacteria pay these trees with nitrogen that would otherwise be unavailable. Pretty remarkable stuff for a such an esoteric group of conifers!

Phyllocladus_aspleniifolius.jpg

Photo Credits: [1] [2]

Further Reading: [1] [2] [3] [4] [5]

The Creeping Strawberry Pine

12170045845_ede1224ecf_o.jpg

With its small, creeping habit and bright red, fleshy female cones, it is easy to see how Microcachrys tetragona earned its common name “creeping strawberry pine.” This miniature conifer is as adorable as it is interesting. With a fossil history that spans 66 million years of Earth’s history, it also has a lot to teach us about biogeography.

Today, the creeping strawberry pine can only be found growing naturally in western Tasmania. It is an alpine species, growing best in what is commonly referred to as alpine dwarf scrubland, above 1000 m (3280 ft) in elevation. Like the rest of the plants in such habitats, the creeping strawberry pine does not grow very tall at all. Instead, it creeps along the ground with its prostrate branches that barely extend more than 30 cm (0.9 ft) above the soil. This, of course, is likely an adaptation to its alpine environment. Plants that grow too tall frequently get knocked back by brutal winds and freezing temperatures among other things.

The typical growth habit of the creeping strawberry pine.

The typical growth habit of the creeping strawberry pine.

The creeping strawberry pine is not a member of the pine family (Pinaceae) but rather the podocarp family (Podocarpaceae). This family is interesting for a lot of reasons but one of the coolest is the fact that they are charismatic representatives of the so-called Antarctic flora. Along with a handful of other plant lineages, it is thought that Podocarpaceae arose during a time when most of the southern continents were combined into a supercontinent called Gondwana. Subsequent tectonic drift has seen the surviving members of this flora largely divided among the continents of the Southern Hemisphere. By combining current day distributions with fossil evidence, researchers are able to use families such as Podocarpaceae to tell a clearer picture of the history of life on Earth.

What is remarkable is that among the various podocarps, the genus Microcachrys produces pollen with a unique morphology. When researchers look at pollen under the microscope, whether extant or fossilized, they can say with certainty if it belongs to a Microcachrys or not. The picture we get from fossil evidence paints an interesting picture for Microcachrys diversity compared to what we see today. It turns out, Microcachrys endemic status is a more recent occurrence.

This distinctive, small, trisaccate pollen grain is typical of what you find with  Microcachrys  whereas all other podocarps produce bisaccate pollen.

This distinctive, small, trisaccate pollen grain is typical of what you find with Microcachrys whereas all other podocarps produce bisaccate pollen.

The creeping strawberry pine is what we call a peloendemic, meaning it belongs to a lineage that was once far more widespread but today exists in a relatively small geographic location. Fossilized pollen from Microcachrys has been found across the Southern Hemisphere, from South America, India, southern Africa, and even Antarctica. It would appear that as the continents continued to separate and environmental conditions changed, the mountains of Tasmania offered a final refuge for the sole remaining species in this lineage.

Another reason this tiny conifer is so charming are its fruit-like female cones. As they mature, the scales around the cone swell and become fleshy. Over time, they start to resemble a strawberry more than anything a gymnosperm would produce. This is yet another case of convergent evolution on a seed dispersal mechanism among a gymnosperm lineage. Birds are thought to be the main seed dispersers of the creeping strawberry pine and those bright red cones certainly have what it takes to catch the eye of a hungry bird. It must be working well for it too. Despite how narrow its range is from a global perspective, the creeping strawberry pine is said to be locally abundant and does not face the same conservation issues that many other members of its family currently face. Also, its unique appearance has made it something of a horticultural curiosity, especially among those who like to dabble in rock gardening.

Mature female cones look more like angiosperm fruit than a conifer cone.

Mature female cones look more like angiosperm fruit than a conifer cone.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3]

How a Tropical Conifer May Hold the Key to Kākāpō Recovery

8528623525_b24a75f47f_o.jpg

The plight of the kākāpō is a tragedy. Once the third most common bird in New Zealand, this large, flightless parrot has seen its numbers reduced to less than 150. In fact, for a time, it was even thought to be extinct. Today, serious effort has been put forth to try and recover this species from the brink of extinction. It has long been recognized that kākāpō breeding efforts are conspicuously tied to the phenology of certain trees but recent research suggests one in particular may hold the key to survival of the species.

The kākāpō shares its island homes (saving the kākāpō involved moving birds to rat-free islands) with a handful of tropical conifers from the families Podocarpaceae and Araucariaceae. Of these tropical conifers, one species is of particular interest to those concerned with kākāpō breeding - the rimu. Known to science as Dacrydium cupressinum, this evergreen tree represents one of the most important food sources for breeding kākāpō. Before we get to that, however, it is worth getting to know the rimu a bit better.

Rimu-Waitakere.jpg

Rimu are remarkable, albeit slow-growing trees. They are endemic to New Zealand where they make up a considerable portion of the forest canopy. Like many slow-growing species, rimu can live for quite a long time. Before commercial logging moved in, trees of 800 to 900 years of age were not unheard of. Also, they can reach immense sizes. Historical accounts speak of trees that reached 200 ft. (61 m) in height. Today you are more likely to encounter trees in the 60 to 100 ft. (20 to 35 m) range.

The rimu is a dioecious tree, meaning individuals are either male or female. Rimu rely on wind for pollination and female cones can take upwards of 15 months to fully mature following pollination. The rimu is yet another one of those conifers that has converged on fruit-like structures for seed dispersal. As the female cones mature, the scales gradually begin to swell and turn red. Once fully ripened, the fleshy red “fruit” displays one or two black seeds at the tip. Its these “fruits” that have kākāpō researchers so excited.

Rimu__Fruit__Dacrydium_cupressinum-9.JPG

As mentioned, it is a common observation that kākāpō only tend to breed when trees like the rimu experience reproductive booms. The “fruits” and seeds they produce are an important component of the diets of not only female kākāpō but their developing chicks as well. Because kākāpō are critically endangered, captive breeding is one of the main ways in which conservationists are supplementing numbers in the wild. The problem with breeding kakapo in captivity is that supplemental food doesn’t seem to bring them into proper breeding condition. This is where the rimu “fruits” come in.

Breeding birds desperately need calcium and vitamin D for proper egg production. As such, they seek out diets high in these nutrients. When researchers took a closer look at the “fruits” of the rimu, the kākāpō’s reliance on these trees made a whole lot more sense. It turns out, those fleshy scales surrounding rimu seeds are exceptionally high in not only calcium, but various forms of vitamin D once thought to be produced by animals alone. The nutritional quality of these “fruits” provides a wonderful explanation for why kākāpō reproduction seems to be tied to rimu reproduction. Females can gorge themselves on the “fruits,” which brings them into breeding condition. They also go on to feed these “fruits” to their developing chicks. For a slow growing, flightless parrot, it seems that it only makes sense to breed when food is this food source is abundant.

8529691516_9e20608bfa_o.jpg

Though far from a smoking gun, researchers believe that the rimu is the missing piece of the puzzle in captive kākāpō breeding. If these “fruits” really are the trigger needed to bring female kākāpō into good shape for breeding and raising chicks, this may make breeding kākāpō in captivity that much easier. Captive breeding is the key to the long term survival of these odd yet charismatic, flightless parrots. By ensuring the production and survival of future generations of kākāpō, conservationists may be able to turn this tragedy into a real success story. What’s more, this research underscores the importance of understanding the ecology of the organisms we are desperately trying to save.

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2]

The World's Only Parasitic Gymnosperm

When we talk about parasitic plants, 99.9% of the time we are talking about angiosperms. However, deep in the mysterious forests of New Caledonia grows the single exception to the rule. Parasitaxus usta is the only parasitic gymnosperm known to exist. The sole member of its genus, P. usta is as strange and beautiful as it is mysterious.

P. usta hails from a strange family of gymnosperms known scientifically as Podocarpaceae. Its purple coloration is absolutely stunning and is the result of high concentrations of anthocyanin pigments in the vacuoles of its cells. Although this strange gymnosperm does in fact produce chloroplasts, they are quite small and the electron transport mechanisms that make photosynthesis possible no longer function.

The true nature of its parasitic lifestyle has remained quite a mystery over the last few decades. A handful of investigations have shown it to be rather unlike any other type of parasitic plant currently known. One of the most bizarre aspects of its morphology is that P. usta does not form any roots. This provided botanists the first clues that it may be a parasite. Further investigation has suggested that, similar to parasitic ericads and orchids, P. usta utilized a fungal intermediary to parasitize the roots of its only known host, another member of the Podocarpaceae family, Falcatifolium taxoides.

Transfer of carbohydrates has been shown to occur through this fungal connection, however, P. usta also seems to obtain nitrogen and water via a direct connection to its host's xylem tissues. In this way it is similar to some mistletoes. As such, it not only can maintain a very high rate of stomatal conductance and a very low water potential, it can also produce cone crops year round. To the best of my knowledge, no other parasitic plant on Earth adopts such a strange combination of strategies.

Despite its unique status, much of the ecology of P. usta remains a complete mystery. For instance, despite being a root parasite, stems of P. usta have been found sprouting from its host tree over 3 feet above the ground. This suggests that P. usta may actually be a strange type of holoparasite. Also, it is entirely unknown how this parasitic gymnosperm becomes established on its host. To date no seed dispersal mechanisms have been described, nor are the seeds sticky. Perhaps its all a matter of chance, which would explain why so few individuals have been found. At the end of the day, the fact that it occurs on a remote island in very few locations means that this bizarrely unique gymnosperm will hold on to its mysteries for many years to come.

Photo Credit: [1] [2]

Further Reading:

http://www.conifers.org/po/Parasitaxus.php

http://bit.ly/2cBUwvj