From Herbivore to Pollinator Thanks to a Parasitoid

dichayea.JPG

In the Atlantic forests of Brazil resides a small orchid known scientifically as Dichaea cogniauxiana. Like most plant species, this orchid experiences plenty of pressure from herbivores. It faces rather intense pressures from two species of weevil in the genus Montella. These weevils are new to science and have yet been given full species status. What's more, they don't appear to eat the leaves of D. cogniauxiana. Instead, female weevils lay eggs in the developing fruits and the larvae hatch out and consume the seeds within. In other words, they treat the fruits like a nursery chamber.

This is where this relationship gets interesting. You see, the weevils themselves appear to take matters into their own hands. Instead of waiting to find already pollinated orchids, an event that can be exceedingly rare in the dense Amazonian forests, these weevils go about pollinating the orchids themselves. Females have been observed picking up orchid pollinia and depositing the pollen onto the stigmas. In this way, they ensure that there will be developing fruits in which they can raise their young.

1-s2.0-S0960982218301672-gr1.jpg

Left unchecked, the weevil larvae readily consume all of the developing seeds within the pod, an unfortunate blow to the reproductive efforts of this tiny orchid. However, the situation changes when parasitoid wasps enter the mix. The wasps are also looking for a place to rear their young but the wasp larvae do not eat orchid seeds. Instead, the wasps must find juicy weevil larvae in which to lay their eggs. When the wasp larvae hatch out, they eat the weevil larvae from the inside out and this is where things get really interesting.

The wasp larvae develop at a much faster rate than do the weevil larvae. As such, they kill the weevil long before it has a chance to eat all of the orchid seeds. By doing so, the wasp has effectively rescued the orchids reproductive effort. Over a five year period, researchers based out of the University of Campinas found that orchid fruits in which wasp larvae have killed off the weevil larvae produced nearly as many seeds as uninfected fruits. As such, the parasitoid wasps have made effective pollinators out of otherwise destructive herbivorous weevils.

The fact that a third party (in this case a parasitic wasp) can change a herbivore into an effective pollinator is quite remarkable to say the least. It reminds us just how little we know about the intricate ways in which species interact and form communities. The authors note that even though pollination in this case represents selfing and thus reduced genetic diversity, it nonetheless increases the reproductive success of an orchid that naturally experiences low pollination rates to begin with. In the hyper diverse and competitive world of Brazilian rainforests, even self-pollination cab be a boost for this orchid.

Photo Credits: [1] [2]

Further Reading: [1]

How a Giant Parasitic Orchid Makes a Living

34281162165_b5ba814c84_b.jpg

Imagine a giant vine with no leaves and no chlorophyll scrambling over decaying wood and branches of a warm tropical forest. As remarkable as that may seem, that is exactly what Erythrorchis altissima is. With stems that can grow to upwards of 10 meters in length, this bizarre orchid from tropical Asia is the largest mycoheterotrophic plant known to science.

Mycoheterotrophs are plants that obtain all of their energy needs by parasitizing fungi. As you can probably imagine, this is an extremely indirect way for a plant to make a living. In most instances, this means the parasitic plants are stealing nutrients from the fungi that were obtained via a partnership with photosynthetic plants in the area. In other words, mycoheterotrophic plants are indirectly stealing from photosynthetic plants.

In the case of E. altissima, this begs the question of where does all of the carbon needed to build a surprising amount of plant come from? Is it parasitizing the mycorrhizal network associated with its photosynthetic neighbors or is it up to something else? These are exactly the sorts of questions a team from Saga University in Japan wanted to answer.

33905127355_fd4bd84026_b.jpg

All orchids require fungal partners for germination and survival. That is one of the main reasons why orchids can be so finicky about where they will grow. Without the fungi, especially in the early years of growth, you simply don't have orchids. The first step in figuring out how this massive parasitic orchid makes its living was to identify what types of fungi it partners with. To do this, the team took root samples and isolated the fungi living within.

By looking at their DNA, the team was able to identify 37 unique fungal taxa associated with this species. Most surprising was that a majority of those fungi were not considered mycorrhizal (though at least one mycorrhizal species was identified). Instead, the vast majority of the fungi associated with with this orchid are involved in wood decay.

Stems climbing on fallen dead wood (a) or on standing living trees (b). A thick and densely branched root clump (c) and thin and elongate roots (d) [Source]

Stems climbing on fallen dead wood (a) or on standing living trees (b). A thick and densely branched root clump (c) and thin and elongate roots (d) [Source]

To ensure that these wood decay fungi weren't simply partnering with adult plants, the team decided to test whether or not the wood decay fungi were able to induce germination of E. altissima seeds. In vitro germination trials revealed that not only do these fungi induce seed germination in this orchid, they also fuel the early growth stages of the plant. Further tests also revealed that all of the carbon and nitrogen needs of E. altissima are met by these wood decay fungi.

These results are amazing. It shows that the largest mycoheterotrophic plant we know of lives entirely off of a generalized group of fungi responsible for the breakdown of wood. By parasitizing these fungi, the orchid has gained access to one of the largest pools of carbon (and other nutrients) without having to give anything back in return. It is no wonder then that this orchid is able to reach such epic proportions without having to do any photosynthesizing of its own. What an incredible world we live in!

33905171165_05da1d498c_b.jpg

Photo Credits: [1] [2]

Further Reading: [1]

The Extraordinary Catasetum Orchids

Male  Catasetum osculatum

Male Catasetum osculatum

Orchids, in general, have perfect flowers in that they contain both male and female organs. However, in a family this large, exceptions to the rules are always around the corner. Take, for instance, orchids in the genus Catasetum. With something like 166 described species, this genus is interesting in that individual plants produce either male or female flowers. What's more, the floral morphology of the individual sexes are so distinctly different from one another that some were originally described as distinct species. 

Female  Catasetum osculatum

Female Catasetum osculatum

In fact, it was Charles Darwin himself that first worked out that plants of the different sexes were indeed the same species. The genus Catasetum enthralled Darwin and he was able to procure many specimens from his friends for study. Resolving the distinct floral morphology wasn't his only contribution to our understanding of these orchids, he also described their unique pollination mechanism. The details of this process are so bizarre that Darwin was actually ridiculed by some scientists of the time. Yet again, Darwin was right. 

Catasetum longifolium

Catasetum longifolium

If having individual male and female plants wasn't strange enough for these orchids, the mechanism by which pollination is achieved is quite explosive... literally. 

Catasetum orchids are pollinated by large Euglossine bees. Attracted to the male flowers by their alluring scent, the bees land on the lip and begin to probe the flower. Above the lip sits two hair-like structures. When a bee contacts these hairs, a structure containing sacs of pollen called a pollinia is launched downwards towards the bee. A sticky pad at the base ensures that once it hits the bee, it sticks tight. 

Male Catasetum flower in action. Taken from BBC's Kingdom of Plants.

Male Catasetum flower in action. Taken from BBC's Kingdom of Plants.

Bees soon learn that the male flowers are rather unpleasant places to visit so they set off in search of a meal that doesn't pummel them. This is quite possibly why the flowers of the individual sexes look so different from one another. As the bees visit the female flowers, the pollen sacs on their back slip into a perfect groove and thus pollination is achieved. 

Eulaema polychroma  visiting  Catasetum integerrimum

Eulaema polychroma visiting Catasetum integerrimum

The uniqueness of this reproductive strategy has earned the Catasetum orchids a place in the spotlight among botanists and horticulturists alike. It begs the question, how is sex determined in these orchids? Is it genetic or are there certain environmental factors that push the plant in either direction? As it turns out, light availability may be one of the most important cues for sex determination in Catasetum

31111938873_b2006358fc_o.jpg

A paper published back in 1991 found that there were interesting patterns of sex ratios for at least one species of Catasetum. Female plants were found more often in younger forests whereas the ratios approached an even 1:1 in older forests. What the researchers found was that plants are more likely to produce female flowers under open canopies and male flowers under closed canopies. In this instance, younger forests are more open than older, more mature forests, which may explain the patterns they found in the wild. It is possible that, because seed production is such a costly endeavor for plants, individuals with access to more light are better suited for female status. 

Catasetum macrocarpum

Catasetum macrocarpum

Aside from their odd reproductive habits, the ecology of these plants is also quite fascinating. Found throughout the New World tropics, Catasetum orchids live as epiphytes on the limbs and trunks of trees. Living in the canopy like this can be stressful and these orchids have evolved accordingly. For starters, they are deciduous. Most of the habitats in which they occur experience a dry season. As the rains fade, the plants will drop their leaves, leaving behind a dense cluster of green pseudobulbs. These bulbous structures serve as energy and water stores that will fuel growth as soon as the rains return. 

Catasetum silvestre in situ

Catasetum silvestre in situ

The canopy can also be low in vital nutrients like nitrogen and phosphorus. As is true for all orchids, Catasetum rely on an intimate partnership with special mychorrizal fungi to supplement these ingredients. Such partnerships are vital for germination and growth. However, the fungi that they partner with feed on dead wood, which is low in nitrogen. This has led to yet another intricate and highly specialized relationship for at least some members of this orchid genus. 

36793851562_606bc44817_o.jpg

Mature Catasetum are often found growing right out of arboreal ant nests. Those that aren't will often house entire ant colonies inside their hollowed out pseudobulbs. This will sometimes even happen in a greenhouse setting, much to the chagrin of many orchid growers. The partnership with ants is twofold. In setting up shop within the orchid or around its roots, the ants provide the plant with a vital source of nitrogen in the form of feces and other waste products. At the same time, the ants will viciously attack anything that may threaten their nest. In doing so, they keep many potential herbivores at bay.  

Female  Catasetum planiceps

Female Catasetum planiceps

To look upon a flowering Catasetum is quite remarkable. They truly are marvels of evolution and living proof that there seems to be no end to what orchids have done in the name of survival. Luckily for most of us, one doesn't have to travel to the jungles and scale a tree just to see one of these orchids up close. Their success in the horticultural trade means that most botanical gardens house at least a species or two. If and when you do encounter a Catasetum, do yourself a favor and take time to admire it in all of its glory. You will be happy that you did. 

Photo Credits: [1] [2] [3] [4] [5] [6] [7] [8] [9] 

Further Reading: [1] [2] [3] [4] [5]

In Search of a Parasitic Orchid

In this episode, In Defense of Plants goes looking for a tiny parasitic orchid called the autumn coralroot (Corallorhiza odontorhiza - http://bit.ly/2xQhzbc). It has no leaves and does not photosynthesize. Instead, it makes its living completely off of mycorrhizal fungi, digesting its hyphae within the cells of its highly derived roots. Along the way we meet plants such as:

 Music by: Artist: Ampacity

Track: Asimov's Sideburns

https://ampacity.bandcamp.com https://www.facebook.com/ampacityband

In Search of the Orange Fringed Orchid

In Defense of Plants is finally back for another exciting botanical adventure! This week we explore another wonderful sand prairie in search of one of North America's most stunning terrestrial orchids - the orange fringed orchid (Platanthera ciliaris). Along the way, we meet a handful of great native plant species that are at home in these sandy soils.

Music by: 
Artist: Eyes Behind the Veil
Track: Folding Chair
Album: Besides
https://eyesbehindtheveil.bandcamp.com/

An Orchid of Hybrid Origin

Hybridization is an often overlooked mechanism for evolution. We are taught in high school that hybrids such as mules and ligers are one-off's, evolutionary dead ends doomed to a life of sterility. Certainly this holds true in many instances. Species separated by great lengths of time and space are simply incompatible. However, there are instances throughout the various kingdoms of life in which hybrids do turn out viable.

If they are different enough from either parent, their creation may lead to speciation down the line. Such events have been found in ferns, butterflies, and even birds. One particular example of a hybrid species only recently came to my attention. While touring the Atlanta Botanical Garden I came across a fenced off bed of plants. Inside the fence were orchids standing about knee height. At the top of each plant was a brilliant spike of orange flowers. "Ah," I exclaimed, "the orange fringed orchid!" The reply I got was unexpected - "Sort of."

What I had stumbled across was neither the orange fringed orchid (Platanthera ciliaris) nor the crested yellow orchid (Platanthera cristata). What I was looking at were a small handful of the globally imperiled Chapman's fringed orchid (Platanthera chapmanii). Though there is some debate about the origins of this species, many believe it to be a naturally occurring hybrid of the other two. In many ways it is a perfect intermediate. Despite its possible hybrid origins, it nonetheless produces viable seed. What's more, it readily hybridizes with both parental species as well as a handful of other Platanthera with which it sometimes shares habitat.

Despite occasionally being found along wet roadside ditches, this species is rapidly losing ground. The wet meadows and pine savannas it prefers are all too quickly being leveled for housing and other forms of development. Although it once ranged from southeast Texas to northern Florida, and southeast Georgia, it has since been reduced to less than 1000 individuals scattered among these three states.

There is a light at the end of the tunnel though. Many efforts are being put forth to protect and conserve this lovely orchid. Greenhouse propagation in places like the Atlanta Botanical Garden are helping supplement wild populations while at the same time, maintaining genetic diversity. New populations have been located in Georgia and are now under protection. Though not out of the woods yet, this species serves as a reminder that a little bit of effort can go a long way.

Further Reading: [1] [2] [3] [4]

Wet Prairies and the White Lady's Slipper

This week we visit a wet prairie in search of the white lady's slipper orchid (Cypripedium candidum). This is a unique habitat type full of incredible plants and we meet many of them along the way. Special thanks to Paul Marcum (http://bit.ly/2r6SG8s) in making this episode possible! 

If you would like to support orchid conservation efforts here in North America, consider purchasing a stick over at http://www.indefenseofplants.com/shop/

Producer, Writer, Creator, Host:
Matt Candeias (http://www.indefenseofplants.com)

Producer, Editor, Camera:
Grant Czadzeck (http://www.grantczadzeck.com)

Twitter: @indfnsofplnts

Facebook: http://www.facebook.com/indefenseofpl...

Patreon: http://www.patreon.com/indefenseofplants

Tumblr: http://www.tumblr.com/indefenseofplants

_________________________________________________________________

Music by: 
Artist: Lazy Legs
Track: Chain of Pink
Album: Chain of Pink
http://lazylegs.bandcamp.com

Seed Anchor

Epiphytic plants live out their entire lives on the trunks or branches of trees. Using their roots, they attach themselves tightly to the bark. Spend any amount of time in the tropics and it will become quite clear that such a lifestyle has been very successful for a plethora of different plant families. Still, living on a tree isn't easy. Epiphytic plants must overcome harsh conditions among or near the canopy.

One of the biggest challenges these plants face starts before they even germinate. This is especially true for orchids. Orchid seeds are more like spores than they are seeds. They are so small that thousands could fit inside of a thimble. Upon ripening, the dust-like seeds waft away on the slightest breeze. In order for epiphytic species to germinate and grow, their seeds must somehow anchor themselves in place on a trunk or branch. Inevitably most seeds are doomed to fail. They simply will not land in a suitable location. It stands to reason then that any adaptation that increases their chances of finding the right kind of habitat will be favored. That's where the strange coils on the tip of Chiloschista seeds, a genus of leafless orchids native to southeast Asia, New Guinea, and Australia, come in. For these orchids, this process is aided by some truly unique seed morphology.

Unlike most orchid seeds that are nothing more than a thin sheath surrounding a tiny embryo, the seeds of Chiloschista have additional parts. These "appendages," which are specialized seed coat cells, are tightly wound into coils. Upon contact with water, these coils shoot out like tiny grappling hooks that grab on to moss and bark alike. In doing so, they anchor the seed in place. By securing their hold on the trunk or branch of a tree, the seeds are much more likely to germinate and grow. This is one of the most extreme examples of seed specialization in the orchid family.

Photo Credit: [1] [2]

Further Reading: [1]

Orchid Dormancy Mediated by Fungi

North America's terrestrial orchids seem to have mastered the disappearing act. When stressed, these plants can enter into a vegetative dormancy, existing entirely underground for years until the right conditions return for them to grow and bloom. Cryptic dormancy periods like this can make assessing populations quite difficult. Orchids that were happy and flowering one year can be gone the next... and the next... and the next...

How and why this dormancy is triggered has confused ecologists and botanists alike. Certainly stress is a factor but what else triggers the plant into going dormant? According to a recent paper published in the American Journal of Botany, the answer is fungal.

Orchids are the poster children for mycorrhizal symbioses. Every aspect of an orchid's life is dependent on these fungal interactions. Despite our knowledge of the importance of mycorrhizal presence in orchid biology, no one had looked at how the abundance of mycorrhizal fungi influenced the life history of these charismatic plants until now.

By observing the presence and abundance of a family of orchid associated fungi known as Russulaceae, researchers found that the abundance of mycorrhizal fungi in the environment is directly related to whether or not an orchid will emerge. The team focused on a species of orchid known commonly as the small whorled pogonia (Isotria medeoloides). Populations of this federally threatened orchid are quite variable and assessing their numbers is difficult.

The team found that the abundance of mycorrhizal fungi is not only related to prior emergence of these plants but could also be used as a predictor of future emergence. This has major implications for orchid conservation overall. It's not enough to simply protect orchids, we must also protect the fungal communities they associate with.

Research like this highlights the need for a holistic habitat approach to conservation issues. So many species are partners in symbiotic relationships and we simply can't value one partner over the other. If conditions change to the point that they no longer favor the mycorrhizal partner, it stands to reason that it would only be a matter of years before the orchids disappeared for good.

Photo Credit: NC Orchid

Further Reading: [1]

A Peculiar Case of Bird Pollination

When we think of bird pollination, we often conjure images of a hummingbird sipping nectar from a long, tubular, red flower. Certainly the selection pressures brought about from entering into a pollination syndrome with birds has led to convergence in floral morphology across a wide array of different plant genera. Still, just when we think we have the natural world figured out, something new is discovered that adds more complexity into the mix. Nowhere is this more apparent than the peculiar relationship between an orchid and a bird native to South Africa.

The orchid in question is known scientifically as Disa chrysostachya. It is a bit of a black sheep of the genus. Whereas most Disa orchids produce a few large, showy flowers, this species produces a spike that is densely packed with minute flowers. They range from orange to red and, like most other bird pollinated flowers, produce no scent. 

Take the time to observe them in the field and you may notice that the malachite sunbird is a frequent visitor. The sunbirds perch themselves firmly on the spike and probe the shallow nectar spurs on each flower. At this point you may be thinking that the pollen sacs, or pollinia, of the orchid are affixed to the beak of the bird but, alas, you would be wrong. 

Closer inspection of the flowers reveal that the morphology and positioning of the pollinia are such that they simply cannot attach to the beak of the bird. The same goes for any potential insect visitors. The plant seems to have assured that only something quite specific can pick up the pollen. To see what is really going on, you would have to take a look at the sunbird's feet. 

That's right, feet. When a sunbird feeds at the flowers of D. chrysostachya, its feet position themselves onto the stiffened lower portion of the flower. This is the perfect spot to come into contact with the sticky pollinia. As the bird feeds, they pick up the pollinia on their claws! The next time the bird lands to feed, it will inevitably deposit that pollen. The orchids seemed to have benefited from the fact that once perched, sunbirds don't often reposition themselves on the flower spike. In this way, self pollination is minimized. A close relative, D. satyriopsis, has also appeared to enter into a pollination with sunbirds in a similar way. 

Though it may seem inefficient, research has shown that this pollination mechanism is quite successful for the orchid.The pollinia themselves stick quite strongly so that no amount of scuffing on branches or preening with beaks can dislodge them. Once pollination has been achieved, each flower is capable of producing thousands upon thousands of seeds.

Photo Credit: Johnson and Brown

Further Reading: [1]

The Curious Case of Hawaii's Endemic Orchids

Orchids and Hawai'i are nearly synonymous. It may come as a surprise then to learn that only three species of orchid are native to this lush archipelago. In fact, there are more non-native species of orchids growing in Hawai'i than there are native. Like much of Hawai'i's endemic flora and fauna, these three distantly related orchid species find themselves on the brink of extinction. How and why only three species of orchid came to call Hawai'i home is a great mystery and it is one that conservationists are struggling to understand before it is too late. 

Orchids produce the smallest seeds of any plants. These dust-like propagules can travel far and wide on the slightest breeze. If any plants were to make it to one of the worlds most remote island chains my bet would be on the orchids. Alas, until settlers arrived, Hawai'i was home to only three - the Hawaiian bog orchid (Platanthera holochila), the Hawai'i jewel-orchid (Anoectochilus sandvicensis), and the Hawai'i widelip orchid (Liparis hawaiensis). The ancestors of these plants must have traveled quite a distance to get to these islands. The Hawaiian bog orchid, for instance, can trace its ancestry back to a related species of Platanthera native to the Aleutian Islands whereas the other two likely blew in from Asia. 

These three species were once found in a variety of locations. Today, however, all of that has changed. Populations of each of Hawai'i's endemic orchids are declining at a rapid rate. In fact, the Hawaiian bog orchid is considered one of the most endangered orchids in the world. The causes of their decline is what one would expect from an island species - habitat destruction, the introduction and subsequent spread of invasive species, and just poor land management in general. It is strange though that so many orchid species from elsewhere in the world are thriving as their endemic cousins are declining. 

Though the exact reasons for this remain uncertain, some of it has to do with another invader - honeybees. Honeybees are native to Europe and are generalists in their foraging abilities. Until bees were were brought to Hawai'i, many introduced orchid species behaved themselves. There simply wasn't anything around to pollinate them. Once honeybees came onto the scene, a few of these introduced species such as the bamboo orchid (Arundina graminifolia) were suddenly able to reproduce. The tropical climate made the land ripe for the taking. But this is only part of the picture. There is another, more interesting conundrum that remains to be solved. 

Orchids absolutely require mycorrhizal fungi to germinate and grow. Why is it then that introduced orchids seem to be doing so much better than the Hawaiian endemics? Good question. Some orchids can be very specific about the fungi they will partner with whereas others are not. It could be that all of the introduced orchids that are naturalizing are generalists whereas the endemics are specialists. It could also be that the endemics simply can't handle the altered disturbance regimes brought on by modern society.

The real reason is probably some combination of these and many more but the fact of the matter remains, Hawai'i's native orchids are in trouble. Since they are not nearly as showy as other orchids they are rather overlooked. This is a shame because if they are lost from their native range, they are gone from the world forever. Luckily there are people out there like Dr. Nicole Hynson of the University of Hawai'i and Dr. Larry Zettler of Illinois College who are working to understand, propagate, and conserve these unique species. 

Photo Credits: University of Hawai'i Museum (http://bit.ly/1K8pjKC), Arkive (http://bit.ly/20kxg17), and G. Daida (http://bit.ly/1K8phCw

Further Reading:
http://bit.ly/1PKOV0C

http://s.si.edu/1QRn0el

http://s.si.edu/1Rjwd1g

http://s.si.edu/1W8bGMb

http://www2.hawaii.edu/~nhynson/Hynson_Lab/Welcome.html

http://www.ic.edu/LarryZettler