The Parrot Pitcher Plant

15474397090_79720ca74a_o.jpg

Southeastern North America is the true home of the carnivorous plants belonging to the genus Sarracenia. Seven of the approximately eight species in this genus reside in North America's coastal plain forests and nowhere else. These evolutionary marvels are famous the world over for their carnivorous pitfall traps but not all members conform to this style of prey capture. The most aberrant of these carnivores is the so-called parrot pitcher plant (Sarracenia psittacina).

The parrot pitcher plant would be easy to pick out of a lineup, even with an untrained eye. Instead of tall, lanky, upright pitchers, it produces a rosette of smaller, entirely prostrate pitchers. Additionally, the leaf-like hood that covers the pitchers of its relatives appears to have grown into a dome-like structure speckled with translucent patches. Finally, the belly of each pitcher sports a leafy fin called an "ala" that runs the whole length of the tube. Indeed, with the exception of perhaps the purple pitcher plant (S. purpurea), the parrot is truly an oddball.

Its unique appearance is likely an adaptation to seasonal flooding and has changed the way in which this particular species captures prey. The pitchers of the parrot pitcher plant do not function as pitfall traps like those of its relatives. Instead, this species utilizes the "lobster trap" method of prey capture. Lured to its pitchers by their bright colors, insects gradually explore the traps. The fin-like ala directs these unsuspecting victims to the mouth of the pitcher. The translucent patches on the domed hood lure the insect into a false sense of security.

Once inside, the insects become disoriented and cannot easily find the proper escape rout. As they crawl farther into the pitcher, backward pointing hairs ensure that escape is impossible. Death is followed by digestion as the pitcher obtains yet another nutrient-rich meal. However, insects aren't the only game in town for the parrot pitcher plant.

7337896544_2e3a62201e_o.jpg

Because of its prostrate habit, the parrot pitcher plant regularly finds itself underwater whenever its already wet habitat floods. This would be bad news for most other pitchers as their upright position would allow whatever was inside to float out and away. Such is not the case for the parrot pitcher. Underwater, the pitchers become even more like a lobster trap. Everything from aquatic insects to tadpoles and fish can and do fall victim to this plant. As such, not even seasonal flooding can put a damper on this unique pitcher plants meal ticket. It is a wonderful example species adaptation.

13990666911_7138d4d59e_o.jpg

Like all members of the southeastern coastal plain community, the parrot pitcher plant is losing its habitat at an alarming rate. Habitat loss is an ever present threat, both in the form of outright destruction from logging and development as well as from sequestration of fire. Coastal plain communities are fire-adapted ecosystems and without it, the myriad species that call this region home are overgrown and choked out. Research has shown that the parrot pitcher plant, as well as other pitcher plants, greatly benefit from regular fires. Fire clears away competing vegetation and the plants respond with vigor.

15473824838_64392e23dc_o.jpg

Luckily, parrot pitcher plant numbers are stable at this point in time. Its low growth habit saves it from threats like mowing, which means that it can do well in places like roadside ditches that are less favorable for its taller relatives. I have said it before and I will say it again, if you value species like the parrot pitcher plant, please do everything you can to support land conservation efforts. Please check out what organizations such as The Longleaf Alliance, Partnership For Southern Forestland Conservation, The Nature Conservancy, and The National Wildlife Federation are doing to protect this amazing region. Simply click the name of the organization to find out more.

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3]

 

The Bladderwort Microbiome Revealed

Utricularia_australis_sl5.jpg

The bladderworts (Utricularia spp.) are among the most cosmopolitan groups of carnivorous plants on this planet. Despite their popularity, their carnivorous habits have been subject to some debate. Close observation reveals that prey capture rates are surprisingly low for most species. This has led some to suggest that the bladderworts may be benefiting from more passive forms of nutrient acquisition. To better understand how these plants utilize their traps, a team of researchers decided to take a closer look at the microbiome living within. 

The team analyzed the trap fluid of a handful of floating aquatic bladderwort species - U. vulgaris, U. australis, and U reflexa. In doing so, they uncovered a bewildering variety of microorganisms perfectly at home within the bladderwort traps. Thanks to sophisticated genetic tools, they were able to classify these microbes in order to investigate what exactly they might be doing inside the traps. 

Their findings were quite astonishing to say the least. The traps of these plants harbor extremely rich microbial communities, far richer than the microbial diversity of other carnivorous plant traps. In fact, the richness of these microbial communities were more akin to the richness seen in the rooting zone of terrestrial plants or the gut of a cow. In terms of the species present, the microbial communities of bladderwort traps most closely resembled that of the pitchers of Sarracenia species as well as the guts of herbivorous iguanas.

The similarities with herbivore guts is quite remarkable. Its not just coincidental either. The types of microbes they found weren't new to science but their function was a bit of a surprise. A large percentage of the bacteria living within the fluid are famously known for producing enzymes that digest complex plant tissues. Similarly, the team found related microbe groups that specialize on anaerobic fermentation. These types of microbes in particular are largely responsible for the breakdown of plant materials in the rumen of cattle.

As it turns out, the microbes living within the traps of these bladderworts are serving a very important purpose for the plant - they are breaking down plant and algae cells that find their way into the traps each time they open and close. In doing so, they give off valuable nutrients that the bladderworts can then absorb and utilize. Let me say that again, the bacteria living in bladderwort traps are digesting algae and other plant materials that these carnivorous plants can then absorb.

Now these bacteria are also responsible for producing a lot of methane in the process. Interestingly enough, the team was not able to detect measurable levels of methane leaving the traps. This would be odd if it wasn't for the community of methane-feeding microbes also discovered living within the traps. The team believes that these organisms metabolize all of the methane being produced before it can escape the traps. 

As remarkable as these findings are, I don't want to give the impression that these carnivorous plants have taken up a strict vegetarian lifestyle. The team also found myriad other microorganisms within the bladder traps, many of them being carnivores themselves. The team also found a rich protist community. A majority of these were euglenids and ciliates. 

F5ULck.gif

These sorts of protists are important microbial predators and the numbers recorded within the traps suggest that they are a rather significant component of these trap communities. As they chase down and consume bacteria and other protists, they release valuable nutrients that the plants can absorb and utilize. Numbers of these predatory protists were much higher in older traps, which have had much more time to accumulate a diverse microbiome. Astonishingly, it is estimated that the protist communities can cycle the entire contents of the bladderwort traps upwards of 4 or 5 times in a 24 hour period. That is some serious turnover of nutrients!

The protists weren't the only predators found within the traps either. There are also a considerable amount of bacterial predators living there as well. These not only cycle nutrients in similar ways to the protist community, it is likely they also exhibit strong controls on the biodiversity within this miniature ecosystem. In other words, they are considered keystone predators of these microcosms.

Also present within the traps were large amounts of fungal DNA. None of the species they found are thought to actually live within the traps. Rather, it is thought that they are taken up as spores blown in from the surrounding environment. Exactly how these organisms find themselves living inside bladderwort traps is something worth considering. The plants themselves are known for being covered in biomfilms. It is likely that many of the organisms living within the traps were those found living on the plants originally. 

Taken together, the remarkable discovery of such complex microbial communities living on and within these carnivorous plants shows just how complex the ecology of such systems really are. Far from the active predators we like to think of them as, the bladderworts nonetheless rely on a mixture of symbiotic orgnaisms to provide them with the nutrients that they need. The fact that these plants are in large part digesting plant and algae materials is what I find most astonishing.

Essentially, one can almost think of bladderworts as plants adorned with tiny, complex cow stomachs, each utilizing their microbial community to gain as much nutrients as they can from their living environment. The bladderworts gain access to nutrients and the microbes get a place to live. The bladderworts really do seem to be cultivating a favorable habitat for these organisms as well. Analysis of the bladder fluid demonstrated that the plants actively regulate the pH of the fluid to maintain their living community of digestive assistants. In doing so, they are able to offset the relative rarity of prey capture. Keep in mind that this research was performed on only three species of bladderwort originating from similar habitats. Imagine what we will find in the traps of the multitude of other Utricularia species.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1]

 

The Mountain Sweet Pitcher Plant

DSCN9285.JPG

I am fascinated by pitcher plants. The myriad shapes, sizes, and colors make them quite a spectacle. Add to that their carnivorous habit and what is not to love? I am used to having to visit bogs or coastlines to see them in person so you can imagine my surprise to learn that a small handful of pitcher plants haunt the mountains of Southern Appalachia.

DSCN9284.JPG

Sarracenia jonesii is a recent acquaintance of mine. I never knew this species existed until 2016. It is a slender pitcher plant whose traps grow taller and narrower than the purple pitcher plant (S. purpurea) but not nearly as tall and robust as species like S. leucophylla. Regardless of its size, this one interesting carnivore. One unique aspect of its ecology is the habitats in which it grows. What could be more strange than a pitcher plant clinging to sloping granite slabs?

DSCN2549.JPG

Most mountainous areas don't hold water for very long. Aside from bowls and the occasional lake, gravity makes short work of standing water. In southern Appalachia, this often results in impressive cascades where sheets of water flow over granite outcrops and balds. Where water moves slow enough to not wash soil and moss away, cataract bogs can form. Soils are so thin in these areas that trees and shrubs can't take root, thus keeping competition to a minimum. Because granite is rather inert, nutrients are scarce. All of these factors combine to make prime carnivorous plant habitat.

A cataract bog clinging to the side of a waterfall.

A cataract bog clinging to the side of a waterfall.

Along the edges of these cataract bogs, anywhere sphagnum and other mosses grow is where S. jonesii finds a home. One would think that growing in such hard-to-reach places would protect this interesting and unique carnivore. Sadly, that is not the case. To start with, S. jonesii was never common to begin with. Native to a small region of North and South Carolina, it is now only found in about 10 locations. 

Habitat destruction both direct and indirect (alterations in hydrology) has taken its toll on its numbers in the wild. To add insult to injury, poaching has become a serious issue. In fact, an all green population of this species was completely wiped out by greedy collectors looking to add something rare to their collection. The good news is that there are dedicated folks working on conserving and reintroducing this plant into the wild. In 2007, conservationists at Meadowview Biological Research Station, with help from the National Fish and Wildlife Foundation Grant, successfully reintroduced a population of S. jonesii to its former range.

Although the future remains uncertain for this species, it nonetheless has captured hearts and minds alike. Hopefully the charismatic nature of this species is enough to save it from extinction. I only wish such dedicated conservation efforts were directed at more imperiled plant species, both charismatic and not. 

Further Reading: [1] [2] [3]