The Gravel Ghost

Atrichoseris_platyphylla_8.jpg

Look closely or you might miss it. The gravel ghost (Atrichoseris platyphylla) is a master of disguise. At home in a small pocket of southwestern North America, this wonderful member of the aster family only puts on a show when rains offer the parched landscape a momentary reprieve.

The gravel ghost is the only member of the genus Atrichoseris. It is different enough from the rest of the chicory tribe (Cichorieae) to warrant its monotypic status. The gravel ghost is a winter annual meaning its seeds germinate at some point in the fall and the plant spends most of the winter putting on growth. As you can probably imagine, life in this corner of the world is pretty tough. Rain is sparse to non-existent and many plants teeter on the edge of desiccation. The fleshy, semi-succulent leaves of the gravel ghost likely store just enough water to offer some insurance against prolonged drought.

52426874_2310083225671117_8594501323351654400_n.jpg

As if drying up wasn’t enough for this plant, the desert’s compliment of hungry herbivores are constantly on the lookout for any plant remotely alive that can offer sustenance. All it takes is a few encounters with the gravel ghost to understand how this plant manages to avoid as much attention as possible. As its common name suggests, this species blends in with the surrounding soil to an extreme degree. From what I can gather, there appears to be a lot of variation in gravel ghost leaf color depending on where the population is growing.

52360921_2310083375671102_6475335477065940992_n.jpg

Some are mostly green whereas others take on a mottled grey hue. Still others seem to have settled on a mixture of browns. It seems that no matter the substrate, the gravel ghost will do its best to blend in. Personally, I would love to see someone investigate what kind of genetic or environmental controls dictate leaf color in this species. It is fascinating to think about how plants can disguise themselves against herbivores.

52313821_2310084042337702_847077647962865664_n.jpg

Starting in late winter and early spring, the gravel ghost needs to complete its annual life cycle. When rains punctuate the drought, the gravel ghost sends up a spindly inflorescence tipped with a few flower heads. If they are lucky, some stalks will avoid being nipped off by sheep and rabbits. Those that do put on quite a floral display. Each head or ‘capitulum’ explodes with clusters of bright white ray flowers. Only at this point does its affinity with the chicory tribe become apparent.

51569569_2310083532337753_7332505520785326080_n.jpg

The need for such a high impact floral display has everything to do with being an annual. There is only limited time for pollination and seed set. Each gravel ghost must produce enough seeds to enure that at least some survive. They simply don’t have multiple seasons to reproduction. Luckily its a member of the aster family and the opportunity for seed production is usually relatively high. With any luck, plenty of pollinators will find these plants tucked in among rocks and gravel and the process will begin again come that fall.

Photo Credit: Joey (www.instagram.com/crime_pays_but_botany_doesnt)

Further Reading: [1] [2] [3]



Meet the Ocotillo

Copy of IMG_4077.JPG

I love the ocotillo (Fouquieria splendens) for many reasons. It is an impossible plant to miss with its spindly, spine-covered stems. It is a lovely plant that is right at home in the arid parts of southwestern North America. Beyond its unique appearance, the ocotillo is a fascinating and important component of the ecology of this region.

My first impression of ocotillo was interesting. I could not figure out where this plant belonged on the tree of life. As a temperate northeasterner, one can forgive my taxonomic ignorance of this group. The family from which it hails, Fouquieriaceae, is restricted to southwestern North America. It contains one genus (Fouquieria) and about 11 species, all of which are rather spiky in appearance.

IMG_4079(1).JPG

Of course, those spines serve as protection. Resources like water are in short supply in desert ecosystems so these plants ensure that it is a real struggle for any animal looking to take a bite. Those spines are tough as well. One manged to pierce the underside of my boot during a hike and I was lucky that it just barely grazed the underside of my foot. Needless to say, the ocotillo is a plant worthy of attention and respect.

One of the most striking aspects of ocotillo life is how quickly these plants respond to water. As spring brings rain to this region of North America, ocotillo respond with wonderful sprays of bright red flowers situated atop their spindly stems. These blooms are usually timed so as to take advantage of migrating hummingbirds and emerging bees. The collective display of a landscape full of blooming ocotillo is jaw-droppingly gorgeous and a sight one soon doesn't forget. It is as if the whole landscape has suddenly caught on fire. Indeed, the word "ocotillo" is Spanish for "little torch."

DSCN4088.JPG

Flowering isn't the only way this species responds to the sudden availability of water. A soaking rain will also bring about an eruption of leaves, turning its barren, white stems bright green. The leaves themselves are small and rather fragile. They do not have the tough, succulent texture of what one would expect out of a desert specialist. That is because they don't have to ride out the hard times. Instead, ocotillo are what we call a drought deciduous species, producing leaves when times are good and water is in high supply, and dropping them as soon as the soil dries out.

DSCN4280.JPG

This cycle of growing and dropping leaves can and does happen multiple times per year. It is not uncommon to see ocotillo leaf out up to 4 or 5 times between spring and fall. During the rest of the year, ocotillo relies on chlorophyll in its stems for its photosynthetic needs. Interestingly enough, this poses a bit of a challenge when it comes to getting enough CO2. Whereas leaves are covered in tiny pours called stomata which help to regulate gas exchange, the stems of an ocotillo are a lot less porous, making it a challenge to get gases in and out. This is where the efficient metabolism of this plant comes in handy.

All plants undergo respiration like you and me. The carbohydrates made during photosynthesis are broken down to fuel the plant and in doing so, CO2 is produced. Amazingly, the ocotillo (as well as many other plants that undergo stem photosynthesis) are able to recycle the CO2 generated by cellular respiration back into photosynthesis within the stem. In this way, the ocotillo is fully capable of photosynthesis even without leaves.

DSCN4295.JPG

Through the good times and the bad, the ocotillo and its relatives are important components of desert ecology. They are as hardy as they are beautiful and getting to see them in person has been a remarkable experience. They ad a flare of surreality to the landscape that must be seen in person to believe.

Further Reading: [1] [2] [3] [4] [5]

The Mighty Saguaro Cactus

IMG_4199.JPG

Where does one begin with a plant like the saguaro cactus (Carnegiea gigantea)? It is recognized the world over for its iconic appearance yet its native range is disproportionately small compared to its popularity. It is easily one of the most spectacular plants I have ever encountered and I will never forget the sound the wind makes as it blows over its spiny pleated trunk. It would be impossible to sum up our collective knowledge of this species in one article, however, I feel that some form of an introduction is necessary. Today I want to honor this icon of the Sonoran Desert.

The saguaro is the only member of the genus Carnegiea, which is part of a subtribe of cacti characterized by their columnar appearance. Despite its unique taxonomic affinity, the evolutionary origins of this cactus remains a bit of a mystery. Though it is undoubtedly related to other columnar cacti of the Americas, a proper family tree seems to be just out of our reach. Due to lots of convergent and parallel evolution as well as conflicts between genealogies and species histories, we still aren't sure of its evolutionary origins. What we do know about this species on a genetic level is nonetheless quite interesting. For instance the saguaro has one of the smallest chloroplast genomes of any non-parasitic plant and we aren’t exactly sure why this is the case.

Saguaro are long lived cacti. Estimating age of a cactus can be rather tricky considering that they don’t produce annual growth rings. This is where long term monitoring projects have come in handy. By observing hundreds of saguaro throughout the Sonoran Desert, experts believe that saguaro can regularly reach ages of 150 to 170 years and some individuals may be able to live for more than 200 years. Amazingly, it is thought that saguaro will not begin to grow their characteristic arms until they reach somewhere around 50 to 100 years of age. That being said, some saguaro never bother growing arms. It all depends on where the conditions they experience throughout their lifetime.

Growth for a saguaro depends on where they are rooted. Under favorable conditions, a saguaro can grow to heights of 50 feet or more, with the world record holder clocking in at a whopping 78 feet in height. Such growth becomes all the more impressive when you realize just how agonizingly slow the process can be. Studies have shown that juvenile saguaro only put on about 1.5 inches of growth in their first eight years of life.

Despite preconceived notions about the hardy nature of most cacti, saguaro have proven to be rather specific in their needs. They are limited in their growth and distribution by the availability of water and warm temperatures. Saguaro, especially young individuals, cannot tolerate periods of prolonged frost. Additionally, germination and seedling survival occur most frequently only during the wettest years. In fact, one study showed that successful years for reproduction in these beloved cacti were tied to volcanic eruptions that cooled the climate just enough to allow the young saguaro to become established.

Outside of volcanic eruptions, saguaro appear to have friends in the surrounding vegetation. Studies have shown that saguaro seedlings seem to do best when growing under the shade of trees like the palo verde (Parkinsonia florida), ironwood (Olneya tesota), and mesquite (Prosopis velutina). The microclimates produced by these trees are much more favorable for saguaro growth than are open desert conditions. In essence, these trees serve as nurseries for young saguaro until they are large enough to handle more exposed conditions. Their nursery habits are not mutually beneficial however as research suggests that saguaro eventually compete with the trees that once protected them for precious resources like nutrients and water.

Saguaros outgrowing their palo verde nurse tree. 

Saguaros outgrowing their palo verde nurse tree. 

At roughly 35 years of age, a saguaro will begin to flower. Flowers are small compared to the size of the cactus but they are abundant. Most flowers are produced at the apex of the cactus and it is thought that the growth of saguaro arms is largely a way of increasing the reproductive potential of large individuals. The flowers are cream colored and night scented. They open in the evening but will stay open and continue to produce nectar well into the morning hours.

Though a wide variety of animals will visit these flowers, the main pollinators are bees during the day and lesser long-nosed bats at night. Interestingly, it has been found that certain amino acids within the nectar of the saguaro can actually help female bats sustain lactation while raising their young, making them a valuable food source for these flying mammals. Catering to such a broad spectrum of potential pollinators is thought to have evolved as a means of increasing seed set. Each saguaro ovary contains many ovules and the more pollen that makes it onto the stigma, the more seeds will be produced.

Saguaroflowers.jpg
A lesser long-nosed bat pollinates a saguaro bloom.

A lesser long-nosed bat pollinates a saguaro bloom.

Due to their size and abundance, it is easy to understand why the saguaro is such an ecologically important species in the Sonoran Desert ecosystem. In essence, they function similar to trees in that they serve as vital sources of shelter and food for myriad desert animals. Woodpeckers, especially the gila and the gilded flicker, regularly hollow out and build nests in saguaro trunks. These hollows are subsequently used by many different bird, mammal, and reptile species. The flowers and fruits are important sources of food for wildlife.

Gila woodpecker with its nesting hole.

Gila woodpecker with its nesting hole.

Gila woodpecker holes become homes for other birds like owls. 

Gila woodpecker holes become homes for other birds like owls. 

On rare occasions, woodpecker holes can even become home to other cacti!

On rare occasions, woodpecker holes can even become home to other cacti!

I sincerely hope that this brief introduction does at least some justice to the wonderful organism that is the saguaro cactus. The Sonoran Desert would be a shell of an ecosystem without its presence. What’s more, it has played a significant role in the culture of this region for millennia. Though it appears quite numerous on the landscape, the long-term status of the saguaro is cause for concern. Numerous declines have been reported throughout its range. With its slow growth rates and infrequent recruitment events, the saguaro can be quite sensitive to rapid changes in its environment. Luckily it has received special protection laws throughout its US range.

Photo Credits: [1] [2] [3] [4]


Further Reading: [1] [2] [3] [4] [5] [6] [7] [8] [9]