Twinspurs & Their Pollinators

Diascia_barberae_ÖBG_2012-07-08_(02).jpg

Garden centers and nurseries always have something to teach me. Though I am largely a native plant gardener, the diversity of plant life offered up for sale is always a bit mind boggling. Perusing the shelves and tables of myriad cultivars and varieties, I inevitably encounter something new and interesting to investigate. That is exactly how I came to learn about the twinspurs (Diascia spp.) and their peculiar floral morphology. Far from being simply beautiful, these herbaceous plants have evolved an interesting relationship with a small group of bees.

Diascia whiteheadii

Diascia whiteheadii

The genus Diascia comprises roughly 70 species and resides in the family Scrophulariaceae. They are native to a decent chunk of southern Africa and have adapted to a range of climate conditions. Most are annuals but some have evolved a perennial habit. The reason these plants caught my eye was not the bright pinks and oranges of their petals but rather the two spurs that hang off the back of each bloom. Those spurs felt like a bit of a departure from other single-spurred flowers that I am used to so I decided to do some research. I fully expected them to be a mutation that someone had selectively bred into these plants, however, that is not the case. It turns out, those two nectar spurs are completely natural and their function in the pollination ecology of these plants is absolutely fascinating.

Diascia rigescens

Diascia rigescens

Not all Diascia produce dual spurs on each flower but a majority of them do. The spurs themselves can vary in length from species to species, which has everything to do with their specific pollinator. The inside of each spur is not filled with nectar as one might expect. Instead, the walls are lined with strange trichomes and that secrete an oily substance. It’s this oily substance that is the sole reward for visiting Diascia flowers.

Diascia megathura  (a) inflorescenc with arrows indicating spurs and (b) cross sectioned spur showing the trichomes secreting oil (Photos: G. Gerlach).

Diascia megathura (a) inflorescenc with arrows indicating spurs and (b) cross sectioned spur showing the trichomes secreting oil (Photos: G. Gerlach).

If you find yourself looking at insects in southern Africa, you may run into a genus of bees called Rediviva whose females have oddly proportioned legs. The two front legs of Rediviva females are disproportionately long compared to the rest of their legs. They look a bit strange compared to other bees but see one in action and you will quickly understand what is going on. Rediviva bees are the sole pollinators of Diascia flowers. Attracted by the bright colors, the bees alight on the flower and begin probing those two nectar spurs with each of their long front legs.

A female  Rediviva longimanus  with its long forelegs.

A female Rediviva longimanus with its long forelegs.

If you look closely at each front leg, you will notice that they are covered in specialized hairs. Those hairs mop up the oily secretions from within each spur and the bee then transfers the oils to sacs on their hind legs. What is even more amazing is that each flower seems to have entered into a relationship with either a small handful or even a single species of Rediviva bee. That is why the spur lengths differ from species to species - each one caters to the front leg length of each species of Rediviva bee. It is worth noting that at least a few species of Diascia are generalists and are visited by at least a couple different bees. Still, the specificity of this relationship appears to have led to reproductive isolation among many populations of these plants, no doubt lending to the diversity of Diascia species we see today.

Diascia  'Coral Belle'

Diascia 'Coral Belle'

The female bees do not eat the oils they collect. Instead, they take them back to their brood chambers, feed them to their developing offspring, and use what remains to line their nests. At this point it goes without saying that if Diascia were to disappear, so too would these bees. It is incredible to think of the myriad ways that plants have tricked their pollinators into giving up most, if not all of their attention to a single type of flower. Also, I love the fact that a simple trip to a garden center unlocked a whole new world of appreciation for a group of pretty, little bedding plants. It just goes to show you that plants have so much more to offer than just their beauty.

Photo Credits: [1] [2] [3] [4] [5] [6]

Further Reading: [1] [2] [3] [4]

An Endangered Iris With An Intriguing Pollination Syndrome

iris1.JPG

The Golan iris (Iris hermona) is a member of the Oncocyclus section, an elite group of 32 Iris species native to the Fertile Crescent region of southwestern Asia. They are some of the showiest irises on the planet. Sadly, like many others in this section, the Golan iris is in real danger of going extinct.

The Golan iris has a rather limited distribution. Despite being named in honor of Mt. Hermon, it is restricted to the Golan Heights region of northern Israel and southwestern Syria. Part of the confusion stems from the fact that the Golan iris has suffered from a bit of taxonomic uncertainty ever since it was discovered. It is similar in appearance to both I. westii and I. bismarckiana with which it is frequently confused. In fact, some authors still consider I. hermona to be a variety of I. bismarckiana. This has led to some serious issues when trying to assess population numbers. Despite the confusion, there are some important anatomical differences between these plants, including the morphology of their rhizomes and the development of their leaves. Regardless, if these plants are in fact different species, it means their respective numbers in the wild decrease dramatically. 

PikiWiki_Israel_42124_Iris_Hermona.JPG

Like other members of the Oncocyclus group, the Golan iris exhibits an intriguing pollination syndrome with a group of bees in the genus Eucera. Their large, showy flowers may look like a boon for pollinators, however, close observation tells a different story. The Golan iris and its relatives receive surprisingly little attention from most of the potential pollinators in this region.

One reason for their lack of popularity has to do with the rewards (or lack thereof) they offer potential visitors. These irises produce no nectar and very little pollen. Because of this and their showy appearance, most pollinators quickly learn that these plants are not worth the effort. Instead, the only insects that ever pay these large blossoms any attention are male Eucerine bees. These bees aren't looking for food or fragrance, however. Instead, they are looking for a place to rest. 

A Eucerine bee visiting a nectar source. 

A Eucerine bee visiting a nectar source. 

The Oncocyclus irises cannot self pollinate, which makes studying potential pollinators a bit easier. During a 5 year period, researchers noted that male Eucerine bees were the only insects that regularly visited the flowers and only after their visits did the plants set seed. The bees would arrive at the flowers around dusk and poke around until they found one to their liking. At that point they would crawl down into the floral tube and would not leave again until morning. The anatomy of the flower is such that the bees inevitably contact stamen and stigma in the process. Their resting behavior is repeated night after night until the end of the flowering season and in this way pollination is achieved. Researchers now believe that the Golan iris and its relatives are pollinated solely by these sleeping male bees.

Sadly, the status of the Golan iris is rather bleak. As recent as the year 2000, there were an estimated 2,000 Golan irises in the wild. Today that number has been reduced to a meager 350 individuals. Though there is no single smoking gun to explain this precipitous decline, climate change, cattle grazing, poaching, and military activity have exacted a serious toll on this species. Plants are especially vulnerable during drought years. Individuals stressed by the lack of water succumb to increased pressure from insects and other pests. Vineyards have seen an uptick in Golan in recent years as well, gobbling up viable habitat in the process.

PikiWiki_Israel_42126_Iris_Hermona.JPG

It is extremely tragic to note that some of the largest remaining populations of Golan irises can be found growing in active mine fields. It would seem that one of the only safe places for these endangered plants to grow are places that are extremely lethal to humans. It would seem that our propensity for violent tribalism has unwittingly led to the preservation of this species for the time being.

At the very least, some work is being done not only to understand what these plants need in order to germinate and survive, but also assess the viability of relocated plants that are threatened by human development. Attempts at transplanting individuals in the past have been met with limited success but thankfully the Oncocyclus irises have caught the eye of bulb growers around the world. By sharing information on the needs of these plants in cultivation, growers can help expand on efforts to save species like the Golan iris.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3] [4]

 

Flower Mimics The Smell of Dying Bees to Attract Pollinators

6908774005_15de9145c7_o.jpg

Pollinator deception is rampant in the plant world. There are serious advantages in tricking your pollinators into thinking they are getting a reward without actually providing one. We have discussed sexual deception in the past ([1] [2]), as well as a case of food deception but a recent discovery has shed light on a new form of food deception in the flowering plant world. It is a strategy that has evolved in a distant relative of the milkweeds and it involves smelling like a dying bee. 

The plant in question is known scientifically as Ceropegia sandersonii. It is a vining species native to South Africa. Like the rest of the members of this genus, C. sandersonii produces bizarrely beautiful flowers that function as pitfall traps. Insects attracted to these blossoms fall down inside and remain trapped for a period of time. As they scramble around inside they inevitably pick up packets of pollen called pollinia. After about a day of imprisonment, the flowers begin to wilt, releasing the insects inside. With any luck these insects will be duped by yet another flower of the same species, and thus pollination is achieved.

How this group of vines goes about attracting potential pollinators varies but, in the case of C. sandersonii, it means smelling like prey. This intriguing plant requires a unique group of kleptoparasitic flies for pollination. Kleptoparasites are any species that make their living by stealing food from other organisms. The flies in question specialize on sucking the juices out of bees that have been attacked by spiders. As the spider liquefies the hapless bee, these flies sneak in and get their fill.

Researchers noticed these flies were frequent visitors of C. sandersonii flowers so they decided to take a closer look at the chemicals responsible for floral scent. Their analyses revealed that the compounds released by the flowers were surprisingly similar to those released by dying bees. In fact, roughly 60% of these compounds were an exact match. Thanks to this discovery, the team hopes that closer inspection of similar flowers will reveal even more unique forms of food mimicry within this genus.

Photo Credits: [1] [2]

Further Reading: [1]