How Aroids Turn Up the Heat

Photo by Jörg Hempel licensed under CC BY-SA 2.0

Photo by Jörg Hempel licensed under CC BY-SA 2.0

A subset of plants have evolved the ability to produce heat, a fact that may come as a surprise to many reading this. The undisputed champions of botanical thermogenesis are the aroids (Araceae). Exactly why they do so is still the subject of scientific debate but the means by which heat is produced is absolutely fascinating.

The heat producing organ of an aroid is called the spadix. Technically speaking, a spadix is a spike of minute flowers closely arranged around a fleshy axis. All aroid inflorescences have one and they come in a wide variety of shapes, colors, and textures. To produce heat, the spadix is hooked up to a massive underground energy reserve largely in the form of carbohydrates or sugars. The process of turning these sugars into heat is rather complex and surprisingly animal-like.

Cross section of a typical aroid inflorescence with half of the protective spathe removed. The spadix is situated in the middle with a rings of protective hairs (top), male flowers (middle), and female flowers (bottom). Photo by Kristian Peters -- F…

Cross section of a typical aroid inflorescence with half of the protective spathe removed. The spadix is situated in the middle with a rings of protective hairs (top), male flowers (middle), and female flowers (bottom). Photo by Kristian Peters -- Fabelfroh licensed under CC BY-SA 3.0

It all starts with a compound we are rather familiar with - salicylic acid - as it is the main ingredient in Aspirin. In aroids, however, salicylic acid acts as a hormone whose job it is to initiate both the heating process as well as the production of floral scents. It signals the mitochondria packed inside a ring of sterile flowers located at the base of the spadix to change their metabolic pathway.

In lieu of their normal metabolic pathway, which ends in the production of ATP, the mitochondria switch over to a pathway called the "Alternative Oxidase Metabolic Pathway." When this happens, the mitochondria start burning sugars using oxygen as a fuel source. This form of respiration produces heat.

Thermal imaging of the inflorescence of Arum maculatum.

Thermal imaging of the inflorescence of Arum maculatum.

As you can imagine, this can be a costly process for plants to undergo. A lot of energy is consumed as the inflorescence heats up. Nonetheless, some aroids can maintain this costly level of respiration intermittently for weeks on end. Take the charismatic skunk cabbage (Symplocarpus foetidus) for example. Its spadix can reach temperatures of upwards of 45 °F (7 °C) on and and off for as long as two weeks. Even more incredible, the plant is able to do this despite freezing ambient temperatures, literally melting its way through layers of snow.

For some aroids, however, carbohydrates just don't cut it. Species like the Brazilian Philodendron bipinnatifidum produce a staggering amount of floral heat and to do so requires a different fuel source - fat. Fats are not a common component of plant metabolisms. Plants simply have less energy requirements than most animals. Still, this wonderful aroid has converged on a fat-burning metabolic pathway that puts many animals to shame. 

The inflorescence of Philodendron bipinnatifidum can reach temps as high as 115 °F (46 °C). Photo by Tekwani licensed under CC BY-SA 3.0

The inflorescence of Philodendron bipinnatifidum can reach temps as high as 115 °F (46 °C). Photo by Tekwani licensed under CC BY-SA 3.0

P. bipinnatifidum stores lots of fat in sterile male flowers that are situated between the fertile male and female flowers near the base of the spadix. As soon as the protective spathe opens, the spadix bursts into metabolic action. As the sun starts to set and P. bipinnatifidum's scarab beetle pollinators begin to wake up, heat production starts to hit a crescendo. For about 20 to 40 minutes, the inflorescence of P. bipinnatifidum reaches temperatures as high as 95 °F (35 °C) with one record breaker maxing out at 115 °F (46 °C)! Amazingly, this process is repeated again the following night.

It goes without saying that burning fat at a rate fast enough to reach such temperatures requires a lot of oxygen. Amazingly, for the two nights it is in bloom, the P. bipinnatifidum inflorescence consumes oxygen at a rate comparable to that of a flying hummingbird, which are some of the most metabolically active animals on Earth.

The world's largest inflorescence belongs to the titan arum (Amorphophallus titanum) and it too produces heat. Photo by Fbianh licensed under CC0 1.0

The world's largest inflorescence belongs to the titan arum (Amorphophallus titanum) and it too produces heat. Photo by Fbianh licensed under CC0 1.0

Again, why these plants go through the effort of heating their reproductive structures is still a bit of a mystery. For most, heat likely plays a role in helping to volatilize floral scents. Anyone that has spent time around blooming aroids knows that this plant family produces a wide range of odors from sweet and spicy to downright offensive. By warming these compounds, the plant may be helping to lure in pollinators from a greater distance away. It is also thought that the heat may be an attractant in and of itself. This is especially true for temperate species like the aforementioned skunk cabbage, which frequently bloom during colder months of the year. Likely both play a role to one degree or another throughout the aroid family.

What we can say is that the process of plant thermogenesis is absolutely fascinating and well worth deeper investigation. We still have much to learn about this charismatic group of plants.

LEARN MORE ABOUT AROID POLLINATION HERE



Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4] [5] [6] [7] [8]

 

Leafy Cacti?

Pereskia aculeata  photo by scott.zona licensed under CC BY 2.0

Pereskia aculeata photo by scott.zona licensed under CC BY 2.0

At first glance, there is little about a Pereskia that would suggest a relation to what we know as cacti. Even a second, third, and forth glance probably wouldn't do much to persuade the casual observer that these plants have a place on cacti family tree. All preconceptions aside, Pereskia are in fact members of the family Cactaceae and quite interesting ones at that.

Most people readily recognize the leafless, spiny green stems of a cactus. Indeed, this would appear to be a unifying character of the family. Pereskia is proof that this is not the case. Though other cacti occasionally produce either tiny, vestigial leaves or stubby succulent leaves, Pereskia really break the mold by producing broad, flattened leaves with only a hint of succulence.

Pereskia spines are produced from areoles in typical cactus fashion. Photo by Frank Vincentz licensed under CC BY-SA 3.0

Pereskia spines are produced from areoles in typical cactus fashion. Photo by Frank Vincentz licensed under CC BY-SA 3.0

What's more, instead of clusters of Opuntia-like pads or large, columnar trunks, Pereskia are mainly shrubby plants with a handful of scrambling climbers mixed in. Similar to their more succulent cousins, the trunks of Pereskia are usually adorned with clusters of long spines for protection. Additionally, each species produces the large, showy, cup-like blooms we have come to expect from cacti.

They are certainly as odd as they are beautiful. As it stands right now, taxonomists recognize two clades of Pereskia - Clade A, which are native to a region comprising the Gulf of Mexico and Caribbean Sea (this group is currently listed under the name Leuenbergeria) and Clade B, which are native to regions just south of the Amazon Basin. This may seem superficial to most of us but the distinction between these groups has a lot to teach us about the evolution of what we know of as cacti. 

Pereskia grandifolia Photo by Anne Valladares (public domain)

Pereskia grandifolia Photo by Anne Valladares (public domain)

Genetically speaking, the genus Pereskia sorts out at the base of the cactus family tree. Pereskia are in fact sister to all other cacti. This is where the distinction between the two Pereskia clades gets interesting. Clade A appears to be the older of the two and all members of this group form bark early on in their development and their stems lack a feature present in all other cacti - stomata. Stomata are microscopic pours that allow the exchange of gases like CO2 and oxygen. Clabe B, on the other hand, delay bark formation until later in life and all of them produce stomata on their stems.

The reason this distinction is important is because all other cacti produce stomata on their stems as well. As such, their base at the bottom of the cactus tree not only shows us what the ancestral from of cactus must have looked like, it also paints a relatively detailed picture of the evolutionary trajectory of subsequent cacti lineages. It would appear that the ancestor of all cacti started out as leafy shrubs that lacked the ability to perform stem photosynthesis. Subsequent evolution saw a delay in bark formation, the presence of stomata on the stem, and the start of stem photosynthesis, which is a defining feature of all other cacti.

Pereskia aculeata Photo by Ricardosdag licensed under CC BY-SA 4.0

Pereskia aculeata Photo by Ricardosdag licensed under CC BY-SA 4.0

If you are as excited about Pereskia as I am, then you , my friend, are in luck. A handful of Pereskia species have found their way into the horticulture trade. With a little luck attention to detail, you too can share you home with one of these wonderful plants. Just be warned, they get tall and their spines, which are often hidden by the leaves, are a force to be reckoned with. Tread lightly with these wonderfully odd cacti. Celebrate their as the evolutionary wonders that they are!

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2]

 

 

Daffodil Insights

Photo by Amanda Slater licensed under CC BY-SA 2.0

Photo by Amanda Slater licensed under CC BY-SA 2.0

Daffodils seem to be everywhere. Their horticultural popularity means that, for many of us, these plants are among the first flowers we see each spring. Daffodils are so commonplace that it's as if they evolved to live in our gardens and nowhere else. Indeed, daffodils have had a long, long history with human civilization, so much so that it is hard to say when our species first started to cohabitate. Our familiarity with these plants belies an intriguing natural history. What follows is a brief overview of the world of daffodils. 

If you are like me, then you may have gone through most of your life not noticing much difference between garden variety daffodils. Though many of us will be familiar with only a handful of daffodil species and cultivars, these introductions barely scratch the surface. One may be surprised to learn that as of 2008, more than 28,000 daffodil varieties have been named and that number continues to grow each and every year. Even outside of the garden, there is some serious debate over the number of daffodil species, much of this having to do with what constitutes a species in this group.

Narcissus poeticus

Narcissus poeticus

As I write this, all daffodils fall under the genus Narcissus. Estimates as to the number of species within Narcissus range from as few as 50 to as many as 80. The genus itself sits within the family Amaryllidaceae and is believed to have originated somewhere between the late Oligocene and early Miocene, some 18 to 30 million years ago. Despite its current global distribution, Narcissus are largely Mediterranean plants, with peak diversity occurring on the Iberian Peninsula. However, thanks to the aforementioned long and complicated history in cultivation, it has become quite difficult to understand the full range of diversity in form and habitat of many species. To understand this, we first need to understand a bit about their reproductive habits.

Much of the evolution of Narcissus seems to center around floral morphology and geographic isolation. More specifically, the length of the floral tube or "corona" and the position of the sexual organs within, dictates just who can effectively pollinate these plants. The corona itself is not made up of petals or sepals but instead, its tube-like appearance is due to a fusion of the stamens into the famous trumpet-like tube we know and love.

Illustration_Narcissus_poeticus0.jpg

Variation in corona shape and size has led to the evolution of three major pollination strategies within this genus. The first form is the daffodil form, whose stigma is situated at the mouth of the corolla, well beyond the 6 anthers. This form is largely pollinated by larger bees. The second form is the paperwhite form, whose stigma is situated more closely to or completely below the anthers at the mouth of the corona. This form is largely pollinated by various Lepidoptera as well as long tongued bees and flies. The third form is the triandrus form, which exhibits three distinct variations on stigma and anther length, all of which are situated deep within the long, narrow corona. The pendant presentation of the flowers in this group is thought to restrict various butterflies and moths from entering the flower in favor of bees.

Narcissus tazetta. Photo by Fanghong licensed under CC BY-SA 3.0

Narcissus tazetta. Photo by Fanghong licensed under CC BY-SA 3.0

The variations on these themes has led to much reproductive isolation among various Narcissus populations. Plants that enable one type of pollinator usually do so at the exclusion of others. Reproductive isolation plus geographic isolation brought on by differences in soil types, habitat types, and altitudinal preferences is thought to have led to a rapid radiation of these plants across the Mediterranean. All of this has gotten extremely complicated ever since humans first took a fancy to these bulbs.

Narcissus cyclamineus. Photo by Francine Riez licensed under CC BY-SA 3.0

Narcissus cyclamineus. Photo by Francine Riez licensed under CC BY-SA 3.0

Reproductive isolation is not perfect in these plants and natural hybrid zones do exist where the ranges of two species overlap. However, hybridization is made much easier with the helping hand of humans. Whether via landscape disturbance or direct intervention, human activity has caused an uptick in Narcissus hybridization. For centuries, we have been mixing these plants and moving them around with little to no record as to where they originated. What's more, populations frequently thought of as native are actually nothing more than naturalized individuals from ancient, long-forgotten introductions. For instance, Narcissus populations in places like China, Japan, and even Great Britain originated in this manner.

All of this mixing, matching, and hybridizing lends to some serious difficulty in delineating species boundaries. It would totally be within the bounds of reason to ask if some of the what we think of as species represent true species or simply geographic varieties on the path to further speciation. This, however, is largely speculative and will require much deeper dives into Narcissus phylogenetics.

Narcissus triandrus. Photo by Dave Gough licensed under CC BY 2.0

Narcissus triandrus. Photo by Dave Gough licensed under CC BY 2.0

Despite all of the confusion surrounding accurate Narcissus taxonomy, there are in fact plenty of true species worth getting to know. These range in form and habit far more than one would expect from horticulture. There are large Narcissus and small Narcissus. There are Narcissus with yellow flowers and Narcissus with white flowers. Some species produce upright flowers and some produce pendant flowers. There are even a handful of fall-blooming Narcissus. The variety of this genus is staggering if you are not prepared for it.

Narcissus viridiflorus - a green, fall-blooming daffodil. Photo by A. Barra licensed under CC BY 3.0

Narcissus viridiflorus - a green, fall-blooming daffodil. Photo by A. Barra licensed under CC BY 3.0

After pollination, the various Narcissus employ a seed dispersal strategy that doesn't get talked about enough in reference to this group. Attached to each hard, black seed are fatty structures known as eliasomes. Eliasomes attract ants. Like many spring flowering plant species around the globe, Narcissus utilize ants as seed dispersers. Ants pick up the seeds and bring them back to their nests. They go about removing the eliasomes and then discard the seed. The seed, safely tucked away in a nutrient-rich ant midden, has a much higher chance of germination and survival than if things were left up to simple chance. It remains to be seen whether or not Narcissus obtain similar seed dispersal benefits from ants outside of their native range. Certainly Narcissus populations persist and naturalize readily, however, I am not aware if ants have any part in the matter.

The endangered Narcissus alcaracensis. Photo by José Luis López González licensed under CC BY-SA 4.0

The endangered Narcissus alcaracensis. Photo by José Luis López González licensed under CC BY-SA 4.0

Despite their popularity in the garden, many Narcissus are having a hard go of it in the wild. Habitat destruction, climate change, and rampant collecting of wild bulbs are having serious impacts on Narcissus numbers. The IUCN considered at least 5 species to be endangered and a handful of some of the smaller species already thought to be extinct in the wild. In response to some of these issues, protected areas have been established that encompass at least some of the healthy populations that remain for some of these species.

If you are anything like me, you have ignored Narcissus for far too long. Sure, they aren't native to the continent on which I live, and sure, they are one of the most commonly used plants in a garden setting, but every species has a story to tell. I hope that, armed with this new knowledge, you at least take a second look at the Narcissus popping up around your neighborhood. More importantly, I hope this introduction makes you appreciate their wild origins and the fact that we still have much to learn about these plants. I have barely scratched the surface of this genus and there is more more information out there worth perusing. Finally, I hope we can do better for the wild progenitors of our favorite garden plants. They need all the help they can get and unless we start speaking up and working to preserve wild spaces, all that will remain are what we have in our gardens and that is not a future I want to be a part of.

Photo Credits: [1] [2] [3] [4] [5] [6] [7]

Further Reading: [1] [2] [3] [4] [5] [6] [7] [8] [9]

 

The Wild World of the Creosote Bush

25774192773_b250a3d5e1_o.jpg

Apart from the cacti, the real rockstar of my Sonoran experience was the creosote bush (Larrea tridentata). Despite having been quite familiar with creosote as an ingredient, I admit to complete ignorance of the plant from which it originates. Having no familiarity with the Sonoran Desert ecosystem, I was walking into completely new territory in regard to the flora. It didn’t take long to notice creosote though. Once we hit the outskirts of town, it seemed to be everywhere.

If you are in the Mojave, Sonoran, and Chihuahuan Deserts of western North America, you are never far from a creosote bush. They are medium sized, slow growing shrubs with sprays of compact green leaves, tiny yellow flowers, and fuzzy seeds. Apparently what is thought of as one single species is actually made up of three different genetic populations. The differences between these has everything to do with chromosome counts. Populations in the Mojave Desert have 78 chromosomes, Sonoran populations have 52 chromosomes, and Chihuahuan have 26. This may have to do with the way in which these populations have adapted to the relative amounts of rainfall each of these deserts receive throughout the year, however, it is hard to say for sure.

IMG_4229.JPG

Regardless, creosote is supremely adapted to these xeric ecosystems. For starters, their branching architecture coupled with their tiny leaves are arranged so as to make the most out of favorable conditions. If you stare at these shrubs long enough, you may notice that their branches largely orient towards the southeast. Also, their leaves tend to be highly clustered along the branches. It is thought that this branching architecture allows the creosote to minimize water loss while maximizing photosynthesis.

Deserts aren’t hot 24 hours per day. Night and mornings are actually quite cool. By taking advantage of the morning sun as it rises in the east, creosote are able to open their stomata and commence photosynthesis during those few hours when evapotranspiration would be at its lowest. In doing so, they are able to minimize water loss to a large degree. Although their southeast orientation causes them to miss out on afternoon and evening sun to a large degree, the benefits of saving precious water far outweigh the loss to photosynthesis. The clustering of the leaves along the branches may also reduce overheating by providing their own shade. Coupled with their small size, this further reduces heat stress and water loss during the hottest parts of the day.

IMG_4392.JPG

Creosote also secrets lots of waxy, resinous compounds. These coat the leaves and to some extent the stems, making them appear lacquered. It is thought that this also helps save water by reducing water loss through the leaf cuticle. However, the sheer diversity of compounds extracted from these shrubs suggests other functions as well. It is likely that at least some of these compounds are used in defense. One study showed that when desert woodrats eat creosote leaves, the compounds within caused the rats to lose more water through their urine and feces. They also caused a reduction in the amount of energy the rats were able to absorb from food. In other words, any mammal that regularly feeds on creosote runs the risk of both dehydration and starvation. This isn’t the only interesting interaction that creosote as with rodents either. Before we get to that, however, we first need to discuss roots.

IMG_4189.JPG

Creosote shrubs have deep root systems that are capable of accessing soil water that more shallowly rooted plants cannot. This brings them into competition with neighboring plants in intriguing ways. When rainfall is limited, shallowly rooted species like Opuntia gain access to water before it has a chance to reach deeper creosote roots. Surprisingly this happens more often than you would think. The branching architecture of creosote is such that it tends to accumulate debris as winds blow dust around the desert landscape. As a result, the soils directly beneath creosote often contain elevated nutrients. This coupled with the added shade of the creosote canopy means that seedlings that find themselves under creosote bushes tend to do better than seedlings that germinated elsewhere. As such, creosote are considered nurse plants that actually facilitate the growth and survival of surrounding vegetation. So, if recruitment and resulting competition from vegetation can become such an issue for long term creosote survival, why then do we still so much creosote on the landscape?

IMG_4228.JPG

The answer may lie in rodents and other burrowing animals in these desert ecosystems. Take a look at the base of a large creosote and you will often find the ground littered with burrows. Indeed, many a mammal finds the rooting zone of the creosote shrub to be a good place to dig a den. When these animals burrow under shallowly rooted desert plants, many of them nibble on and disturb the rooting zones. Over the long-term, this can be extremely detrimental for the survival of shallow rooted species. This is not the case for creosote. Its roots run so deep that most burrowing animals cannot reach them. As such, they avoid most of the damage that other plants experience. This lends to a slight survival advantage for creosote at the expense of neighboring vegetation. In this way, rodents and other burrowing animals may actually help reduce competition for the creosote.

Barring major disturbances, creosote can live a long, long time. In fact, one particular patch of creosote growing in the Mojave Desert is thought to be one of the oldest living organisms on Earth. As creosote shrubs grow, they eventually get to a point in which their main stems break and split. From there, they begin producing new stems that radiate out in a circle from the original plant. These clones can go on growing for centuries. By calculating the average growth rate of these shrubs, experts have estimated that the Mojave specimen, affectionately referred to as the “King Clone,” is somewhere around 11,700 years old!

The ring of creosote that is King Clone.

The ring of creosote that is King Clone.

For creosote, its slow and steady wins the race. They are a backbone of North American desert ecosystems. Their structure offers shelter, their seeds offer food, and their flowers support myriad pollinators. Creosote is one shrub worthy of our respect and admiration.

Photo Credit: [1] [2]

Further Reading: [1] [2] [3] [4]

The Giant Genomes of Geophytes

Canopy plant (Paris japonica) Photo by Radek Szuban licensed under CC BY-NC 2.0

Canopy plant (Paris japonica) Photo by Radek Szuban licensed under CC BY-NC 2.0

A geophyte is any plant with a short, seasonal lifestyle and some form of underground storage organ ( bulb, tuber, thick rhizome, etc.). Plants hailing from a variety of families fall into this category. However, they share more than just a similar life history. A disproportionate amount of geophytic plants also possess massive genomes. 

As we have discussed in previous posts, life isn't easy for geophytes. Cold temperatures, a short growing season, and plenty of hungry herbivores represent countless hurdles that must be overcome. That is why many geophytes opt for rapid growth as soon as conditions are right. However, they don't do this via rapid cell division. 

Dutchman's breeches (Dicentra cucullaria) emerging with preformed buds.

Dutchman's breeches (Dicentra cucullaria) emerging with preformed buds.

Instead, geophytes spend the "dormant" months pre-growing all of their organs. What's more, the cells that make up their leaves and flowers are generally much larger than cells found in non-geophytes. This is where that large genome comes into plant. If they had to wait until the first few weeks of spring to start their development, a large genome would only get in the way. Their dormant season growth means that these plants don't have to worry about streamlining the process of cellular division. They can take their time. 

As such, an accumulation of genetic material isn't detrimental. Instead, it may actually be quite beneficial for geophytes. Associated with large genomes are things like larger stomata, which helps these plants better regulate their water needs. The large genomes may very well be the reason that many geophytic plants are so good at taking advantage of such ephemeral growing conditions. 

When the right conditions present themselves, geophytes don't waste time. Pre-formed organs like leaves and flowers simply have to fill with water instead of having to wait for tissues to divide and differentiate. Water is plentiful during the spring so geophytes can rely on turgor pressure within their large cells for stability rather than investing in thick cell walls. That is why so many spring blooming plants feel so fleshy to the touch. 

Taken together, we can see how large genomes and a unique growth strategy have allowed these plants to exploit seasonally available habitats. It is worth noting, however, that this is far from the complete picture. With such a wide variety of plant species adopting a geophytic lifestyle, we still have a lot to learn about the secret lives of these plants.

Photo Credits: [1] [2]

Further Reading: [1]

Are Algae Plants?

Haeckel_Siphoneae.jpg

I was nibbling on some nori the other day when a thought suddenly hit me. I don't know squat about algae. I know it comes in many shapes, sizes, and colors. I know it is that stuff that we used to throw at each other on the beach. I know that it photosynthesizes. That's about it. What are algae? Are they even plants?

The shortest answer I can give you is "it depends." The term algae is a bit nebulous in and of itself. In Latin, the word "alga" simply means "seaweed." Algae are paraphyletic, meaning they do not share a recent common ancestor with one another. In fact, without specification, algae may refer to entirely different kingdoms of life including Plantae (which is often divided in the broad sense, Archaeplastida and the narrow sense, Viridiplantae), Chromista, Protista, or Bacteria.

Caulerpa racemosa, a beautiful green algae. Photo by Nhobgood Nick Hobgood licensed under CC BY-SA 3.0

Caulerpa racemosa, a beautiful green algae. Photo by Nhobgood Nick Hobgood licensed under CC BY-SA 3.0

Taxonomy being what it is, these groupings may differ depending on who you ask. The point I am trying to make here is that algae are quite diverse from an evolutionary standpoint. Even calling them seaweed is a bit misleading as many different species of algae can be found in fresh water as well as growing on land.

Take for instance what is referred to as cyanobacteria. Known commonly as blue-green algae, colonies of these photosynthetic bacteria represent some of the earliest evidence of life in the fossil record. Remains of colonial blue-green algae have been found in rocks dating back more than 4 billion years. As a whole, these types of fossils represent nearly 7/8th of the history of life on this planet! However, they are considered bacteria, not plants.

Diatoms (Chromista) are another enormously important group. The single celled, photosynthetic organisms are encased in beautiful glass shells that make up entire layers of geologic strata. They comprise a majority of the phytoplankton in the world's oceans and are important indicators of climate. However, they belong to their own kingdom of life - Chromista or the brown algae.

To bring it back to what constitutes true plants, there is one group of algae that really started it all. It is widely believed that land plants share a close evolutionary history with a branch of green algae known as the stoneworts (order Charales). These aquatic, multicellular algae superficially resemble plants with their stalked appearance and radial leaflets.

A nice example of a stonewort (Chara braunii). Photo by Show_ryu licensed under CC BY-SA 3.0

A nice example of a stonewort (Chara braunii). Photo by Show_ryu licensed under CC BY-SA 3.0

It is likely that land plants evolved from a Chara-like ancestor that may have resembling modern day hornworts that lived in shallow freshwater inlets. Estimates of when this happen go back as far as 500 million years before present. Unfortunately, fossil evidence is sparse for this sort of thing and mostly comes in the form of fossilized spores and molecular clock calculations.

Porphyra umbilicalis  - One of the many species of red algae frequently referred to as nori. Photo by Gabriele Kothe-Heinrich licensed under CC BY-SA 3.0

Porphyra umbilicalis  - One of the many species of red algae frequently referred to as nori. Photo by Gabriele Kothe-Heinrich licensed under CC BY-SA 3.0

Now, to bring it back to what started me down this road in the first place. Nori is made from algae in the genus Porphyra, which is a type of Rhodophyta or red algae. Together with Chlorophyta (the green algae), they make up some of the most familiar groups of algae. They have also been the source of a lot of taxonomic debate. Recent phylogenetic analyses place the red algae as a sister group to all other plants starting with green algae. However, some authors prefer to take a broader look at the tree and thus lump red algae in a member of the plant kingdom. So, depending on the particular paper I am reading, the nori I am currently digesting may or may not be considered a plant in the strictest sense of the word. That being said, the lines are a bit blurry and frankly I don't really care as long as it tastes good.

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4]

 

How a Giant Parasitic Orchid Makes a Living

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Imagine a giant vine with no leaves and no chlorophyll scrambling over decaying wood and branches of a warm tropical forest. As remarkable as that may seem, that is exactly what Erythrorchis altissima is. With stems that can grow to upwards of 10 meters in length, this bizarre orchid from tropical Asia is the largest mycoheterotrophic plant known to science.

Mycoheterotrophs are plants that obtain all of their energy needs by parasitizing fungi. As you can probably imagine, this is an extremely indirect way for a plant to make a living. In most instances, this means the parasitic plants are stealing nutrients from the fungi that were obtained via a partnership with photosynthetic plants in the area. In other words, mycoheterotrophic plants are indirectly stealing from photosynthetic plants.

In the case of E. altissima, this begs the question of where does all of the carbon needed to build a surprising amount of plant come from? Is it parasitizing the mycorrhizal network associated with its photosynthetic neighbors or is it up to something else? These are exactly the sorts of questions a team from Saga University in Japan wanted to answer.

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Photo by mutolisp licensed under CC BY-NC-SA 2.0

All orchids require fungal partners for germination and survival. That is one of the main reasons why orchids can be so finicky about where they will grow. Without the fungi, especially in the early years of growth, you simply don't have orchids. The first step in figuring out how this massive parasitic orchid makes its living was to identify what types of fungi it partners with. To do this, the team took root samples and isolated the fungi living within.

By looking at their DNA, the team was able to identify 37 unique fungal taxa associated with this species. Most surprising was that a majority of those fungi were not considered mycorrhizal (though at least one mycorrhizal species was identified). Instead, the vast majority of the fungi associated with with this orchid are involved in wood decay.

Stems climbing on fallen dead wood (a) or on standing living trees (b). A thick and densely branched root clump (c) and thin and elongate roots (d) [Source]

Stems climbing on fallen dead wood (a) or on standing living trees (b). A thick and densely branched root clump (c) and thin and elongate roots (d) [Source]

To ensure that these wood decay fungi weren't simply partnering with adult plants, the team decided to test whether or not the wood decay fungi were able to induce germination of E. altissima seeds. In vitro germination trials revealed that not only do these fungi induce seed germination in this orchid, they also fuel the early growth stages of the plant. Further tests also revealed that all of the carbon and nitrogen needs of E. altissima are met by these wood decay fungi.

These results are amazing. It shows that the largest mycoheterotrophic plant we know of lives entirely off of a generalized group of fungi responsible for the breakdown of wood. By parasitizing these fungi, the orchid has gained access to one of the largest pools of carbon (and other nutrients) without having to give anything back in return. It is no wonder then that this orchid is able to reach such epic proportions without having to do any photosynthesizing of its own. What an incredible world we live in!

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Photo Credits: [1] [2]

Further Reading: [1]

Rein In Those Seeds

Photo by Stan Shebs licensed under CC BY-SA 3.0

Photo by Stan Shebs licensed under CC BY-SA 3.0

Plants living on islands face a bit of a conundrum. In order to get to said islands, the ancestors of those plants had to exhibit extreme seed or spore dispersal strategies. However, if plants are to persist after arriving to an island, long-distance dispersal becomes rather risky. In the case of oceanic islands, seeds or spores that travel too far end up in the water. As such, we often observe an evolutionary reduction in dispersal ability for island residents. 

Islands, however, are not always surrounded by water. You can have "islands" on land as well. The easiest example for most to picture would be the alpine zone of a mountain. Species adapted to these high-elevation habitats find it hard to compete with species native to low-elevation habitats and are therefore stuck on these "islands in the sky." Less obvious are islands created by a specific soil type. 

Take, for instance, gypseous soils. Such soils are the result of large amounts of gypsum deposits at or near the soil surface. Gypseous soils are found in large quantities throughout parts of western North America, North and South Africa, western Asia, Australia, and eastern Spain. They are largely the result of a massive climatic shift that occurred during the Eocene, some 50 million years ago. 

Licensed under public domain

Licensed under public domain

Massive mountain building events during that time were causing large reductions in atmospheric CO2 concentrations. The removal of this greenhouse gas via chemical weathering caused a gradual decline in average temperatures around the world. Earth was also becoming a much drier place and throughout the areas mentioned above, hyper-saline lakes began to dry up. As they did, copious amount of minerals, including gypsum, were left behind. 

These mineral-rich soils differ from the surrounding soils in that they contain a lot of salts. Salt makes life incredibly difficult for most terrestrial plants. Life finds a way, however, and a handful of plant species inevitably adapted to these mineral-rich soils, becoming specialists in the process. They are so specialized on these types of soils that they simply cannot compete with other plant species when growing in more "normal" soils. 

Essentially, these gypseous soils function like soil or edaphic islands. Plants specialized in growing there really don't have the option to disperse far and wide. They have to rein it in or risk extirpation. For a group of plants growing in gypseous soils in western North America, this equates to changes in seed morphology. 

Mentzelia is a genus of flowering plants in the family Loasaceae. There are somewhere around 60 to 70 different species, ranging from annuals to perennials, and forbs to shrubs (they are often referred to as blazing stars but since that would lead to too much confusion with Liatris, I will continue to refer to them as Mentzelia).

For most species in this genus, seed dispersal is accomplished by wind. Plants growing on "normal" soils produce seeds with a distinct wing surrounding the seed. A decent breeze will dislodge them from their capsule, causing them blow around. With any luck some of those seeds will land in a suitable spot for germination, far from their parents. Such is not the case for all Mentzelia though. When researchers took a closer look at species that have specialized on gypseous soils, they found something intriguing. 

Mentzelia phylogeny showing reduction in seed wings. [source]

Mentzelia phylogeny showing reduction in seed wings. [source]

The wings surrounding the seeds of gypseous Mentzelia were either extremely reduced in size or had disappeared altogether. Just as it makes no sense for a plant living on an oceanic island to disperse its seeds far out into the ocean, it too makes no sense for gypseous Mentzelia to disperse their seeds into soils in which they cannot compete. It is thought that limited dispersal may help reinforce the types of habitat specialization that we see in species like these Mentzelia. The next question that must be answered is whether or not such specialization and limited dispersal comes at the cost of genetic diversity. More work will be needed to understand such dynamics. 

Photo Credits: [1] [2] [3]

Further Reading: [1] [2]

 

Hydatellaceae: The Other Basal Angiosperms

Photo by Kevin Thiele licensed under CC BY 2.0

Photo by Kevin Thiele licensed under CC BY 2.0

Though rather obscure to most of the world, the genus Trithuria has enjoyed somewhat of a celebrity status in recent years. A paper published in 2007 lifted this tiny group of minuscule aquatic plants out of their spot in Poales and granted them a place among the basal angiosperm lineage Nymphaeales. This was a huge move for such little plants. 

The genus Trithuria contains 12 species, the majority of which reside in Australia, however, two species, T. inconspicua and T. konkanensis, are native to New Zealand and India. They are all aquatic herbs and their diminutive size and inconspicuous appearance make them easy to miss. For quite some time these odd plants were considered to be a group of highly reduced monocots. Their original placement was in the family Centrolepidaceae. All of that changed in 2007.

Close inspection of Trithuria DNA told a much different story. These were not highly reduced monocots after all. Instead, multiple analyses revealed that Trithuria were actually members of the basal angiosperm lineage Nymphaeales. Together with the water lilies (Nymphaeaceae) and the fanworts (Cabombaceae), these plants are living representatives of some of the early days in flowering plant evolution. 

Of course, DNA analysis cannot stand on its own. The results of the new phylogeny had to be corroborated with anatomical evidence. Indeed, closer inspection of the anatomy of Trithuria revealed that these plants are truly distinct from members of Poales based on a series of features including furrowed pollen grains, inverted ovules, and abundant starchy seed storage tissues. Taken together, all of these lines of evidence warranted the construction of a new family - Hydatellaceae.

The 12 species of Trithuria are rather similar in their habits. Many live a largely submerged aquatic lifestyle in shallow estuarine habitats. As you may have guessed, individual plants look like tiny grass-like rosettes. Their small flower size has lent to some of their taxonomic confusion over the years. What was once thought of as individual flowers were revealed to be clusters or heads of highly reduced individual flowers. 

Reproduction for these plants seems like a tricky affair. Some have speculated that water plays a role but close inspections of at least one species revealed that very little pollen transfer takes place in this way. Wind is probably the most common way in which pollen from one plant finds its way to another, however, the reduced size of these flowers and their annual nature means there isn't much time and pollen to go around. It is likely that most of the 12 species of Trithuria are self-pollinated. This is probably quite useful considering the unpredictable nature of their aquatic habitats. It doesn't take much for these tiny aquatic herbs to establish new populations. In total, Trithuria stands as living proof that big things often come in small packages. 

Photo Credits: [1]

Further Reading: [1] [2] [3]

 

On the Ecology of Krameria

Photo by Stan Shebs licensed under CC BY-SA 3.0

Photo by Stan Shebs licensed under CC BY-SA 3.0

There is something satisfying about saying "Krameria." Whereas so many scientific names act as tongue twisters, Krameria rolls of the tongue with a satisfying confidence. What's more, the 18 or so species within this genus are fascinating plants whose lifestyles are as exciting as their overall appearance. Today I would like to give you an overview of these unique parasitic plants.

Commonly known as rhatany, these plants belong to the family Krameriaceae. This is a monotypic clade, containing only the genus Krameria. Historically there has been a bit of confusion as to where these plants fit on the tree of life. Throughout the years, Krameria has been placed in families like Fabaceae and Polygalaceae, however, more recent genetic work suggests it to be unique enough to warrant a family status of its own. 

Regardless of its taxonomic affiliation, Krameria is a wonderfully specialized genus of plants with plenty of offer the biologically curious among us. All 18 species are shrubby, though at least a couple species can sometimes barely qualify as such. They are a Western Hemisphere taxon with species growing native as far south as Paraguay and Chile and as far north as Kansas and Colorado. They generally inhabit dry habitats.

Photo by Stan Shebs licensed under CC BY-SA 3.0

Photo by Stan Shebs licensed under CC BY-SA 3.0

As I briefly mentioned above, most if not all of the 18 species are parasitic in nature. They are what we call "hemiparasites" in that despite stealing from their hosts, they are nonetheless fully capable of photosynthesis. It is interesting to note that no one (from what I have been able to find) has yet been able to raise these plants in captivity without a host. It would seem that despite being able to photosynthesize, these plants are rather specialized parasites. 

That is not to say that they have evolved to live off of a specific host. Far from it actually. A wide array of potential hosts, ranging from annuals to perennials, have been identified. What I find most remarkable about their parasitic lifestyle is the undeniable advantage it gives these shrubs in hot, dry environments. Research has found that despite getting a slow start on growing in spring, the various Krameria species are capable of performing photosynthesis during extremely stressful periods and for a much longer duration than the surrounding vegetation. 

Photo by mlhradio licensed under CC BY-NC 2.0

Photo by mlhradio licensed under CC BY-NC 2.0

The reason for this has everything to do with their parasitic lifestyle. Instead of producing a long taproot to reach water reserves deep in the soil, these shrubs invest in a dense layer of lateral roots that spread out in the uppermost layers of soil seeking unsuspecting hosts. When these roots find a plant worth parasitizing, they grow around its roots and begin taking up water and nutrients from them. By doing this, Krameria are not limited by what water or other resources their roots can find in the soil. Instead, they have managed to tap into large reserves that would otherwise be locked away inside the tissues of their neighbors. As such, the Krameria do not have to worry about water stress in the same way that non-parasitic plants do. 

Photo by Stan Shebs licensed under CC BY-SA 3.0

Photo by Stan Shebs licensed under CC BY-SA 3.0

By far the most stunning feature of the genus Krameria are the flowers. Looking at them it is no wonder why they have been associated with legumes and milkworts. They are beautiful and complex structures with a rather specific pollination syndrome. Krameria flowers produce no nectar to speak of. Instead, they have evolved alongside a group of oil-collecting bees in the genus Centris.

One distinguishing feature of Krameria flowers are a pair of waxy glands situated on each side of the ovary. These glands produce oils that female Centris bees require for reproduction. Though Centris bees are not specialized on Krameria flowers, they nonetheless visit them in high numbers. Females alight on the lip and begin scraping off oils from the glands. As they do this, they inevitably come into contact with the stamens and pistil. The female bees don't feed on these oils. Instead, they combine it with pollen and nectar from other plant species into nutrient-rich food packets that they feed to their developing larvae.  

Photo by João Medeiros licensed under CC BY 2.0

Photo by João Medeiros licensed under CC BY 2.0

Following fertilization, seeds mature inside of spiny capsules. These capsules vary quite a bit in form and are quite useful in species identification. Each spine is usually tipped in backward-facing barbs, making them excellent hitchhikers on the fur and feathers of any animal that comes into contact with them.  

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4]

A Surprising Realization About Leaf Windows

lithos.JPG

I will never forget the first time I laid eyes on a Lithops. These odd little succulents are truly marvels of evolution. The so-called "living stones" really do earn their name as most are exquisitely camouflaged to match the gravelly soils in which they grow. If bizarre color patterns weren't enough, Lithops, as well as many other succulents, live their lives almost completely buried under the soil. All one ever really sees is the very tip of their succulent leaves and the occasional flower.

Marloth-Lithops-drawing.jpg

It is the tips of those leaves that make people swoon. Lithops belong to a hodgepodge mix of succulent genera and families that produce windowed leaves. Aside from their striking patterns, the tips of their leaves are made up of layers of translucent cells, which allow light to penetrate into the interior of the leaf where the actual photosynthetic machinery is housed. Their semi-translucent leaves, coupled with their nearly subterranean habit, have led to the assumption that the leaf windows allow the plants to continue photosynthesis all the while being mostly buried. Despite the popularity of this assumption, few tests had been performed to see whether or not the windows function as we think. All of that changed back in the year 2000.

As hinted at above, a variety of succulent plants have converged on a similar leaf morphology. This is where things get a bit strange. Not all plants that exhibit the leaf window trait find themselves buried in the soil. Others, such as Peperomia graveolens for example, produce the photosynthetic tissues on tall stems. Examples like this led at least some researchers to second guess the common assumption of windows increasing photosynthesis and the resulting investigations were surprising to say the least. 

Peperomia graveolens. © Raimond Spekking / CC BY-SA 4.0 (via Wikimedia Commons)

Peperomia graveolens. © Raimond Spekking / CC BY-SA 4.0 (via Wikimedia Commons)

A duo of researchers decided to test the assumption that leaf windows increase photosynthesis by channeling light directly to the photosynthetic machinery inside. The researchers used tape to cover the leaf windows of a variety of succulent plant species. When they compared photosynthetic rates between the two groups, not a single difference was detected. Plants who had their leaves covered photosynthesized the same amount as plants with uncovered leaves. These data were quite shocking. Because they tested this assumption across a variety of plant species, the results suggested that the function of windowed leaves isn't as straight forward as we thought. These findings raised more questions than they solved.

Subsequent experiments only served to reinforce the original findings. What's more, some even showed that plants with covered windows actually photosynthesized more than plants with uncovered windows. It seems that windowed leaves function in a completely opposite manner than the popular assumption. The key to this patterns may lie in heat exchange. When the researchers took the temperature of the interior of the leaves in each group, they found that internal leaf temperatures were significantly higher in the uncovered group and this has important implications for photosynthesis for these species.

High leaf temperatures can be extremely damaging to photosynthetic proteins. If too much light filters through, leaf temperatures can actually hit damaging levels. This is one reason that many of these plant species have adopted this bizarre semi-subterranean habit. Plants that experienced such high temperatures throughout the course of a day had permanent damage done to their photosystems. This led to a reduction of fitness over time. Such lethal temperature spikes did not happen to leaves that had been covered.

Haworthia truncata. Photo by www.haworthia-gasteria.com

Haworthia truncata. Photo by www.haworthia-gasteria.com

If you're anything like me, at this point you must be questioning the role of the leaf windows entirely. Why would they be there if they may actually hurt the plants in the long run? Well, this is where knowing something about the habitat of each species comes into play. Not all leaf windows are created equal. The patterns of their windows vary quite a bit depending on where the plants evolved. In 2012, a paper was published that looked at the patterns of Lithops leaf windows in relation to their place of origin. Not all Lithops grow in the same conditions and various species hail from regions with vastly different climates.

What the paper was able to demonstrate was that Lithops native to regions that experience more average annual rainfall have much larger window areas on their leaves than Lithops native to drier regions. Again, the underpinnings of this discovery nonetheless have to do with light availability. Wetter areas experience more cloud cover than drier areas so Lithops growing where its cloudy have to cope with a lot less sun than their more xeric-growing cousins. As such, having a larger window allows more diffuse light into the leaf for photosynthesis without having to worry about the damaging temperatures.

Photo by Petra licensed under CC BY-NC 2.0

Photo by Petra licensed under CC BY-NC 2.0

The reverse is true for Lithops from drier climates. They have smaller leaf windows because they experience more days with direct sun. Smaller windows means less sunlight entering the leaf. This serves to keep internal leaf temperatures within a much safer range, thus protecting the delicate proteins inside. As it turns out, leaf windows seem to represent a trade-off between photosynthesis and overheating. What's more, some window-leaved species seem to be evolving away from the light transmitting function of their cousins living in shadier conditions. If anything, this serves as a reminder that simply because something seems obvious, that doesn't mean its always true. Stay curious, my friends!

Photo Credits: [1] [2] [3] [4] [5] [6]

Further Reading: [1] [2] [3] [4] [5] [6]

The Extraordinary Catasetum Orchids

Male Catasetum osculatum. Photo by Orchi licensed under CC BY-SA 3.0

Male Catasetum osculatum. Photo by Orchi licensed under CC BY-SA 3.0

Orchids, in general, have perfect flowers in that they contain both male and female organs. However, in a family this large, exceptions to the rules are always around the corner. Take, for instance, orchids in the genus Catasetum. With something like 166 described species, this genus is interesting in that individual plants produce either male or female flowers. What's more, the floral morphology of the individual sexes are so distinctly different from one another that some were originally described as distinct species. 

Female Catasetum osculatum. Photo by Valdison Aparecido Gil licensed under CC BY-SA 4.0

Female Catasetum osculatum. Photo by Valdison Aparecido Gil licensed under CC BY-SA 4.0

In fact, it was Charles Darwin himself that first worked out that plants of the different sexes were indeed the same species. The genus Catasetum enthralled Darwin and he was able to procure many specimens from his friends for study. Resolving the distinct floral morphology wasn't his only contribution to our understanding of these orchids, he also described their unique pollination mechanism. The details of this process are so bizarre that Darwin was actually ridiculed by some scientists of the time. Yet again, Darwin was right. 

Catasetum longifolium. Photo by Maarten Sepp licensed under CC BY-SA 4.0

Catasetum longifolium. Photo by Maarten Sepp licensed under CC BY-SA 4.0

If having individual male and female plants wasn't strange enough for these orchids, the mechanism by which pollination is achieved is quite explosive... literally. 

Catasetum orchids are pollinated by large Euglossine bees. Attracted to the male flowers by their alluring scent, the bees land on the lip and begin to probe the flower. Above the lip sits two hair-like structures. When a bee contacts these hairs, a structure containing sacs of pollen called a pollinia is launched downwards towards the bee. A sticky pad at the base ensures that once it hits the bee, it sticks tight. 

Male Catasetum flower in action. Taken from BBC's Kingdom of Plants.

Male Catasetum flower in action. Taken from BBC's Kingdom of Plants.

Bees soon learn that the male flowers are rather unpleasant places to visit so they set off in search of a meal that doesn't pummel them. This is quite possibly why the flowers of the individual sexes look so different from one another. As the bees visit the female flowers, the pollen sacs on their back slip into a perfect groove and thus pollination is achieved. 

The uniqueness of this reproductive strategy has earned the Catasetum orchids a place in the spotlight among botanists and horticulturists alike. It begs the question, how is sex determined in these orchids? Is it genetic or are there certain environmental factors that push the plant in either direction? As it turns out, light availability may be one of the most important cues for sex determination in Catasetum

Photo by faatura licensed under CC BY-NC-ND 2.0

Photo by faatura licensed under CC BY-NC-ND 2.0

A paper published back in 1991 found that there were interesting patterns of sex ratios for at least one species of Catasetum. Female plants were found more often in younger forests whereas the ratios approached an even 1:1 in older forests. What the researchers found was that plants are more likely to produce female flowers under open canopies and male flowers under closed canopies. In this instance, younger forests are more open than older, more mature forests, which may explain the patterns they found in the wild. It is possible that, because seed production is such a costly endeavor for plants, individuals with access to more light are better suited for female status. 

Catasetum macrocarpum. Photo by maarten sepp licensed under CC BY-SA 2.0

Catasetum macrocarpum. Photo by maarten sepp licensed under CC BY-SA 2.0

Aside from their odd reproductive habits, the ecology of these plants is also quite fascinating. Found throughout the New World tropics, Catasetum orchids live as epiphytes on the limbs and trunks of trees. Living in the canopy like this can be stressful and these orchids have evolved accordingly. For starters, they are deciduous. Most of the habitats in which they occur experience a dry season. As the rains fade, the plants will drop their leaves, leaving behind a dense cluster of green pseudobulbs. These bulbous structures serve as energy and water stores that will fuel growth as soon as the rains return. 

Catasetum silvestre in situ. Photo by Antonio Garces licensed under CC BY-NC-ND 2.0

Catasetum silvestre in situ. Photo by Antonio Garces licensed under CC BY-NC-ND 2.0

The canopy can also be low in vital nutrients like nitrogen and phosphorus. As is true for all orchids, Catasetum rely on an intimate partnership with special mychorrizal fungi to supplement these ingredients. Such partnerships are vital for germination and growth. However, the fungi that they partner with feed on dead wood, which is low in nitrogen. This has led to yet another intricate and highly specialized relationship for at least some members of this orchid genus. 

Photo by faatura licensed under CC BY-NC-ND 2.0

Photo by faatura licensed under CC BY-NC-ND 2.0

Mature Catasetum are often found growing right out of arboreal ant nests. Those that aren't will often house entire ant colonies inside their hollowed out pseudobulbs. This will sometimes even happen in a greenhouse setting, much to the chagrin of many orchid growers. The partnership with ants is twofold. In setting up shop within the orchid or around its roots, the ants provide the plant with a vital source of nitrogen in the form of feces and other waste products. At the same time, the ants will viciously attack anything that may threaten their nest. In doing so, they keep many potential herbivores at bay.  

Female Catasetum planiceps. Photo by sunoochi licensed under CC BY 2.0

Female Catasetum planiceps. Photo by sunoochi licensed under CC BY 2.0

To look upon a flowering Catasetum is quite remarkable. They truly are marvels of evolution and living proof that there seems to be no end to what orchids have done in the name of survival. Luckily for most of us, one doesn't have to travel to the jungles and scale a tree just to see one of these orchids up close. Their success in the horticultural trade means that most botanical gardens house at least a species or two. If and when you do encounter a Catasetum, do yourself a favor and take time to admire it in all of its glory. You will be happy that you did. 

Photo Credits: [1] [2] [3] [4] [5] [6] [7] [8] [9] 

Further Reading: [1] [2] [3] [4] [5]

The Incredible Feat of a Resurrection Plant

By EnigmaticMindX via https://imgur.com/4Pa9zdN

By EnigmaticMindX via https://imgur.com/4Pa9zdN

It is understandable why one would look at the crispy brown bundle of a Selaginella lepidophylla and think that it was dead. No wonder then why this hardy spikemoss has become such a novelty item for those looking for a unique gift. Indeed, even the common name of "resurrection plant" suggests that this species miraculously returns from the dead with the simple addition of water. A dormant resurrection plant is far from dead, however. It is in a state of dormancy that we are still struggling to understand.

Selaginella lepidophylla is native to the Chihuahuan desert, spanning the border between the US and Mexico. This is a harsh habitat for most plants, let alone a Lycophyte. However, this lineage has not survived hundreds of millions of years by being overly sensitive to environmental change and S. lepidophylla is a wonderful reminder of that.

As you can probably imagine, tolerating near-complete desiccation can be pretty beneficial when your habitat receives an average of only 235 mm (9.3 in) of rain each year. A plant can either store water for those lean times or go dormant until the rains return. The latter is exactly what S. lepidophylla does. As its water supply dwindles, the whole body of the plant curls up into a tight ball and waits. With little in the way of roots anchoring it to the ground, dormant plants are often at the mercy of the winds, which blows them around like a tiny tumbleweed until they are wedged into a crack or crevice.

Photo by Gary Nored licensed under CC BY-NC 2.0

Photo by Gary Nored licensed under CC BY-NC 2.0

When the rains return, S. lepidophylla needs to be ready. Wet this crispy bundle and watch as over the course of about a day, the dormant ball unfurls to reveal the stunning body of a photosynthetic spikemoss ready to take advantage of moist conditions. Such conditions are short lived, of course, so after a few days drying out, the plant shrivels up and returns to its dormant, ball-like state. How does the plant manage to do this? Why doesn't it simply die? The answer to these questions has been the subject of quite a bit of debate and investigation. 

What we do know is that part of its success has to do with curling up into a ball. Without water in its tissues, its sensitive photosynthetic machinery would easily become damaged by punishing UV rays. By curling up, the plant essentially shelters these tissues from the sun. Indeed, plants that were kept from curling up experienced irreversible damage to their photo systems and were not as healthy as plants that did curl up. To this, the plant owes its success to rather flexible cell walls. Unlike other plants that snap when folded, the cells of S. lepidophylla are able to fold and unfold without any major structural damage.

As far as metabolism and chemistry is concerned, however, we are still trying to figure out how S. lepidophylla survives such drastic shifts. For a while it was thought that, similar to other organisms that undergo such dramatic desiccation, the plant relies on a special sugar called trehalose. Trehalose is known to bind to important proteins and membranes in other desiccation-tolerant organisms, thus protecting them from damage and allowing them to quickly return to their normal function as soon as water returns.

An analysis of non-desiccating Selaginella species, however, showed that S. lepidophylla doesn't produce a lot of trehalose. Though it is certainly present in its tissues, more wet-loving species of Selaginella contain much higher amounts of this sugar. Instead, it has been found that other sugars may actually be playing a bigger role in protecting the inner workings of this plant. Sorbitol and xylitol are found in much higher concentrations within the tissues of S. lepidophylla, suggesting that they may be playing a bigger role than we ever realized. More work is needed to say for sure.

Finally, it would appear that S. lepidophylla is able to maintain enzyme activities within its cells at much higher levels during desiccation periods than was initially thought possible. When dried, some enzymes were found to be working at upwards of 75% efficiency of those found in hydrated tissues. This is really important for a plant that needs to respond quickly to take advantage of fleeting conditions. Along with quick production of new enzymes, this "idling" of enzymatic activity during dormancy is thought to not only protect the plant from too much respiration, but also allows it to hit the ground running as soon as favorable conditions return. 

Despite our lack of understanding of the process, it is amazing to watch this resurrection plant in action. To see something go from a death-like state to a living, photosynthetic organism over the course of a day is truly a marvel worth enjoying.

Photo Credits: [1] [2]

Further Reading: [1]

The Nitrogen-Fixing Abilities of Cycads

Photo by Daderot Public Domain

Photo by Daderot Public Domain

Long before the first legumes came onto the scene, the early ancestors of Cycads were hard at work fixing atmospheric nitrogen. However, they don't do this on their own. Despite being plentiful in Earth's atmosphere, gaseous nitrogen is not readily available to most forms of life. Only a special subset of organisms are capable of turning gaseous nitrogen into forms usable for life. Some of the first organisms to do this were the cyanobacteria, which has led them down the path towards symbioses with various plants on many occasions. 

Cycads are but one branch of the gymnosperm tree. Their lineage arose at some point between the Carboniferous and Permian eras. Throughout their history it would seem that Cycads have done quite well in poor soils. They owe this success to a partnership they struck up with cyanobacteria. Although it is impossible to say when exactly this happened, all extant cycads we know of today maintain this symbiotic relationship with these tiny prokaryotic organisms. 

Cross section of a coralloid cycad root showing the green cyanobacteria inside. Photo by George Shepherd licensed under CC BY-NC-SA 2.0

Cross section of a coralloid cycad root showing the green cyanobacteria inside. Photo by George Shepherd licensed under CC BY-NC-SA 2.0

The relationship takes place in Cycad roots. Cycads don't germinate with cyanobacteria in tow. They must acquire them from their immediate environment. To do so, they begin forming specialized structures called precoralloid roots. Unlike other roots that generally grow downwards, these roots grow upwards. They must situate themselves in the upper layer of soil where enough light penetrates for cyanobacteria to photosynthesize.

The cyanobacteria enter into the precoralloid roots through tiny cracks and take up residence. This causes a change in root development. The Cycad then initiates their development into true coralloid roots, which will house the cyanobacteria from that point on. Cycads appear to be in full control of the relationship, dolling out carbohydrates in return for nitrogen depending on the demands of their environment. Coralloid roots can shed and reform throughout the lifetime of the plant. It is quite remarkable to think about how nitrogen-fixing symbiotic relationships between plants and microbes have evolved independently throughout the history of life on this planet.

Photo Credits: [1] [2]

Further Reading: [1] [2]

 

The Hidden Anatomy of Grass Flowers

14344128_1475745312452329_2661359320953108752_n.jpg

Grass flowers have their own unique beauty. Examine them with a hand lens and a whole new world of angiosperm diversity suddenly opens up. Unlike other flowering plants, their charm lies not in showy sepals or petals, but in an intricacy centered around the utilization of wind for pollination. However, such floral organs are not lacking. Grass flowers do in fact produce a perianth, the function of which has been highly modified.

20217692280_ac716c1813_b.jpg

To see what I am referring to, you need to do some dissection under a scope. Pull off a flower and peel away the sheaths (the palea and lemma) that cover it. Inside you will see an ovary complete with feathery stigmas as well as the anthers. At the base of the ovary sits a pair of scales called lodicules. These lodicules are thought to be the rudimentary remains of the perianth. They certainly don't resemble sepals or petals but that is because the function of these structures is not to attract pollinators. They assist in pollination in another way.

Photo by Matt Lavin CC BY-SA 2.0

Photo by Matt Lavin CC BY-SA 2.0

When grass flowers are ready for reproduction, the lodicules begin to swell. This swelling serves to push apart the rigid palea and lemma that protected the flowering parts as they developed. Once apart, the anthers and stigma are free to emerge and let wind do the dirty work for them. Lodicules differ quite a bit from species to species in their size, shape, and overall appearance. Much of this is likely tied to the overall structure in grass flowers.

Photo Credits: [1] [2]

Further Reading: [1]

 

Evidence Of Carnivory In Teasel

Photo by Isidre blanc licensed under CC BY-SA 4.0

Photo by Isidre blanc licensed under CC BY-SA 4.0

As far as carnivorous plants are concerned, the common teasel (Dipsacus fullonum) seems like a strange fit. Observe this plant up close, however, and you might notice something interesting. Its leaves are perfoliate and form a cup-like depression where they attach to the main stem. Not only does this cup regularly fill with water, it also frequently traps small insects.

Many have speculated over the function of this anatomical trap. Much of this speculation has centered around the idea that it may serve as a form of protection for the flowers located above. Insect herbivores climbing up the stem in search of food instead find a moat of water. Some inevitably fall in and drown in the process. Other hypotheses have been put forward as well including the possibility of something approaching carnivory. 

The idea that common teasel could be, to some degree, carnivorous never really went away. For most of this time it has remained entirely theoretical. There simply was no empirical evidence available to say otherwise. All of that changed with a 2011 study published in PLOS. A research duo finally put this theory to the test in the first ever experiment to see if teasel gains any sort of nutrient benefit from its insect victims.

Dipsacus fullonum (Wild Teasel, Common Teasel). Rainwater is held back in leaves. Photo by Björn Appel licensed under CC BY-SA 3.0

Dipsacus fullonum (Wild Teasel, Common Teasel). Rainwater is held back in leaves. Photo by Björn Appel licensed under CC BY-SA 3.0

By systematically supplying teasel plants with insect prey, the team was able to look at how plants responded to the addition of a potential meal. They added various levels of insect larvae to some plants and removed them from others. For their study, evidence would come in the form of some sort of physiological response to the feeding treatments. If teasel really is obtaining nutrients from its insect victims, it stands to reason that those nutrients would be allocated to either growth or reproduction.

The resulting data offers the first evidence that teasel may in fact be benefiting from the insect carcasses. Although the team found no evidence that plants supplemented with insects were increasing in overall biomass, they did see a positive effect on not only the number of seeds produced but also their size. In other words, when fed a diet of insects, the plants weren't growing any larger but they were producing larger amounts of heavier seeds. This is a real boon for a plant with a biennial life cycle like teasel. The more healthy seeds they can produce, the better.

As exciting as these finds are, one must temper their expectations. As the authors themselves state in their paper, these findings must be replicated in order to say for certain that the effects they measured were due to the addition of insect prey. Second, no chemical analyses were made to determine if the plants are actively digesting these insects or even how available nutrients may be absorbed. Simply put, more work is needed. Perhaps teasel is a species that, evolutionary speaking, is on its way to becoming a true carnivore. We still can't say for sure. Nonetheless, they have given us the first evidence in support of a theory that went more than a century without testing. It is interesting to think that there is a strong possibility that if someone wants to see a carnivorous plant, they need go no further than a fallow field.

Photo Credits: [1] [2]

Further Reading: [1]

Red or White?

Photo by Msact at English Wikipedia licensed under CC BY-SA 3.0

Photo by Msact at English Wikipedia licensed under CC BY-SA 3.0

Who doesn't love a nice oak tree? One cannot overstate their importance both ecologically and culturally. Although picking an oak tree out of a lineup is something many of us are capable of doing, identifying oaks to species can be a bit more challenging. This is further complicated by the fact that oaks often hybridize. Still, it is likely you have come across some useful tips and tricks for narrowing down your oak choices. One such trick is distinguishing between the red oaks and the white oaks. If you're anything like me, this is something you took for granted for a while. Is there anything biologically or ecologically meaningful to such a split?

In short, yes. However, a true appreciation of these groups requires a deeper look. To start with, oaks are members of the genus Quercus, which belongs in the family Fagaceae. Globally there are approximately 400 species of oak and each falls into one of three categories - the red oaks (section Lobatae), the white oaks (section Quercus), and the so-called "intermediate" oaks (section Protoblanus). For the sake of this article, I will only be focusing on the red and white groups as that is where most of the oak species reside. The intermediate oak group is made up of 5 species, all of which are native to the southwestern United States and northwestern Mexico.

As is common with oak identification, reliable techniques for distinguishing between the two groups can be tricky. Probably the most reliable feature is located on the inner surface of the acorn cap. In white oaks, it is hairless or nearly so, whereas in red oaks, it is covered in tiny hairs. Another useful acorn feature is the length of time it takes them to germinate. White oak acorns mature in one season and germinate in the fall. As such, they contain lower levels of tannins. Red oak acorns (as well as those of the intermediate group) generally take at least two seasons to mature and therefore germinate the following spring. Because of this, red oak acorns have a much higher tannin content. For more information on why this is the case, read this article.

Less apparent than acorns is the difference in the wood of red and white oaks. The wood of white oaks contains tiny structures in their xylem tissues called tyloses. These are absent from the wood of red oaks. The function of tyloses are quite interesting. During extreme drought or in the case of some sort of infection, they cut off regions of the xylem to stop the spread of an embolism or whatever may be infecting the tree. As such, white oaks tend to be more rot and drought resistant. Fun fact, tyloses are the main reason why white oak is used for making wine and bourbon barrels as it keeps them from leaking their contents.

More apparent to the casual observer, however, is leaf shape. In general, the white oaks produce leaves that have rounded lobes, whereas the red oaks generally exhibit pointed lobes with a tiny bristle on their tips. At this point you may be asking where an unlobed species like shingle oak (Quercus imbricaria) fits in. Look at the tip of its leaf and you will see a small bristle, which means its a member of the red oak group. Similarly, the buds of these two groups often differ in their overall shape. White oak buds tend to be smaller and often have blunted tips whereas the buds of red oaks are generally larger and often pointed.

Tricky leaves of the shingle oak (Quercus imbricaria). Note the bristle tip! Photo by Greg Blick licensed under CC BY-NC-ND 2.0

Tricky leaves of the shingle oak (Quercus imbricaria). Note the bristle tip! Photo by Greg Blick licensed under CC BY-NC-ND 2.0

Despite this broad generalizations, exceptions abound. This is further complicated by the fact that many species will readily hybridize. Quercus is, after all, a massive genus. Regardless, oaks are wonderful species chock full of ecological and cultural value. Still, oak appreciation is something we all need more of in our lives. I encourage you to try some oak identification of your own. Get outside and see if you can use any of these tricks to help you identify some of the oaks in your neighborhood.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3]

More to Tall Boneset Than Meets the Eye

DSCN3315.JPG

For most of the growing season, tall boneset (Eupatorium altissimum) is largely overlooked. When it comes time to flower, however, it is impossible to miss. Contrasted against a sea of goldenrods, its bright white flowers really stand out. This is a hardy species, tolerating lots of sun and dry soils. It is also a boon for pollinators and is usually humming with attention. To the naked eye, it would seem that there is nothing strange going on with this species. It grows, flowers, and sets seed year after year. However, a gene’s eye view of tall boneset tells a vastly different story. 

A population-wide study revealed that the vast majority of the tall boneset plants we encounter are made up entirely of females. In fact, only populations found in the Ozark Mountains were found to produce sexually viable flowers with male and female organs. This is fascinating considering how wide spread this species is in North America. A close examination of the genome revealed that sexual plants were genetically diploid whereas the female-only plants were genetically triploid. These triploid plants produce sterile male parts that either have highly deformed pollen grains or produce no pollen at all. 

21868311_10101692196237255_216788388_o.jpg

Sexual populations of tall boneset do not reproduce vegetatively. They must be cross pollinated in order to set seed. Such is not the case for the female-only populations. These plants set seed on their own without any pollen entering into the equation. The seeds they produce are essentially clones of the mother plant. Such asexual reproduction seems to be very advantageous for these plants. For starters, they produce considerably more seed than their sexually reproducing relatives. The offspring produced from those seeds, having the same genetic makeup as their mothers, are inherently well-adapted to whatever conditions their mothers were growing in. As such, populations can readily colonize and expand, which goes a long way in explaining the female-only dominance. 

Although tall boneset really hits its stride in midwestern North America, it can be found growing throughout the eastern portion of this continent. Casual observation would never reveal such interesting population dynamics which is why single species studies are so important. Not only do we learn that much more about a beloved plant, we also gain an understanding of how plants evolve over time as well as factors one must consider should conservation measures ever need to be considered. 

Further Reading: [1] 

How Do Palms Survive Hurricanes?

U.S. Navy photo by Jim Brooks public domain

U.S. Navy photo by Jim Brooks public domain

The destructive force of typhoons and hurricanes are no joking matter. Human structures are torn to shreds and flooded in the blink of an eye. It is devastating to say the least. With all of this destruction, one must wonder how native flora and fauna have coped with such forces over millions of years. The true survivors of these sorts of storms are the palms. What would completely shred an oak seems to ruffle a palm tree. What is it about palms that allows them to survive these storms intact? 

To better understand palm adaptations, one must first consider their place on the evolutionary tree. Palms are monocots and they have more in common with grasses than they do trees like oaks or pines. Their wood evolved independently of other tree species. Take a look at a palm stump. Instead of rings, you will see a dense structure of tiny straws that resemble the cross section of a telephone wire. This is because palms do not produce secondary xylem tissues that give other trees their rings. This makes them far more bendy than their dicotyledonous neighbors.

Whereas the woods of oaks and maples are really good at supporting a lot of branch weight, such wood is considerably more rigid than that of palms. Palms forgo heavy branches for large leaves and therefore invest more in flexibility. The main stems of some palm species can bend as much as 40 to 50 degrees before snapping, a perfect adaptation to dealing with regular storm surges. 

Photo by Kadeve licensed under CC BY-SA 3.0

Photo by Kadeve licensed under CC BY-SA 3.0

Another adaptation of the palms are their leaves. Unlike most trees, palms don't bother with spindly branches. Instead, they produce a canopy of large leaves supported by a flexible midrib. These act sort of like large feathers, allowing their canopy to readily shed water and bend against even the strongest winds. Although their leaves will snap if buffeted hard enough, palm canopies accrue considerably less damage under such conditions. Another adaptation exhibited by palm leaves is their ability to fold up like a paper fan. This reduces their otherwise large surface area against powerful winds. 

Finally, palms have rather dense roots. They sacrifice size for quantity. Instead of a few large roots anchored into the soil, palms produce a multitude of smaller roots that spread out into the upper layers of the soil. This is especially useful when growing in sand. By increasing the number of roots they put down, palms are able to hold on to a larger volume of soil and therefore possess a much heavier base. This keeps them stranding upright in all but the worst conditions. 

Of course, these are rather broad generalizations. Not all palms have evolved in response to such punishing weather events. Research has shown that such adaptations are more prevalent in palms growing in places like the Caribbean than they are in palms growing in the rainforests of South America. Regardless, their phylogenetic history has stood the test of time and will continue to do so for quite some time. 

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] 

How Plants Influence Honeybee Caste System

Is has long been known that food fed to larval honeybees influences their development and therefore their place in the hive. Larvae fed a mixture of pollen and honey, often referred to as "bee bread," develop into sterile workers whereas larvae fed special secretions termed "royal jelly" from nurses within the colony will develop into queens. Despite this knowledge, the mechanisms underpinning such drastic developmental differences have remained a mystery... until now.

A team of researchers from Nanjing University in China have uncovered the secret to honeybee caste systems and it all comes down to the plants themselves. It all has to do with tiny molecules within plants called microRNA. In eukaryotic organsisms, microRNA plays a fundamental role in the regulation of gene expression. In plants, they have considerable effects on flower size and color. In doing so, they can make floral displays more attractive to busy honeybees.

As bees collect pollen and nectar, they pick up large quantities of these microRNA molecules. Back in the hive, these products are not distributed equally, which influences the amount of microRNA molecules that are fed to developing larvae. The team found that microRNA molecules are much more concentrated in bee bread than they are in royal jelly. Its this difference in concentrations that appears to be at the root of the caste system.

Larvae that were fed bee bread full of microRNA molecules developed smaller bodies and reduced, sterile ovaries. In other words, they developed into the worker class. Alternatively, larvae fed royal jelly, which has much lower concentrations of microRNA, developed along a more "normal" pathway, complete with functioning ovaries and a fuller body size; they developed into queens.

All of this hints at a deep co-evolutionary relationship. The fact that these microRNA molecules not only make plants more attractive to pollinators but also influence the caste system of these insects is quite remarkable. Additionally, this opens up new doors into understanding co-evolutionary dynamics. If horizontal transfer of regulatory molecules between two vastly different kingdoms of life can manifest in such important ecological relationships, there is no telling what more is awaiting discovery. 

Further Reading: [1]