The Only True Cedars

  Cedrus deodara

Cedrus deodara

The only true cedars on this planet can be found growing throughout mountainous regions of the western Himalayas and Mediterranean. All others are cedars by name only. The so-called “cedars” we encounter here in North America are not even in the same family as the true cedars. Instead, they belong to the Cypress family (Cupressaceae). The true cedars all belong to the genus Cedrus and are members of the family Pinaceae. They are remarkable trees with tons of ecological and cultural value.

 J. White,1803-1824.

J. White,1803-1824.

The true cedars are stunning trees to say the least. They regularly reach heights of 100 ft. (30 m.) or more and can live for thousands of years. Cedars exhibit a dimorphic branching structure, with long shoots forming branches and smaller shoots carrying most of the needle load. The needles themselves are borne in dense, spiral clusters, giving the branches a rather aesthetic appearance. Each needle produces layers of wax, which vary in thickness depending on how exposed the tree is growing. This waxy layer helps protect the tree from sunburn and desiccation.

  Cedrus libani

Cedrus libani

  Cedrus libani

Cedrus libani

One of the easiest ways to identify a cedar is by checking out its cones. All members of the genus Cedrus produce upright, barrel-shaped cones. Male cones are smaller and don’t stay on the tree for very long. Female cones, on the other hand, are quite large and stay on the tree until the seeds are ripe. Upon ripening, the entire female cone disintegrates, releasing the seeds held within. Each seed comes complete with blisters full of distasteful resin, which is thought to deter seed predators.

 Male cones of  Cedrus atlantica

Male cones of Cedrus atlantica

 Female  Cedrus  cones.

Female Cedrus cones.

In total, there are only four recognized species of cedar - the Atlas cedar (Cedrus atlantica), the Cyprus cedar (C. brevifolia), the deodar cedar (C. deodara), and the Lebanon cedar (C. libani). I have heard arguments that C. brevifolia is no more than a variant of C. libani but I have yet to come across any source that can say this for certain. Much more work is needed to assess the genetic structure of these species. Even their place within Pinaceae is up for debate. Historically it seems that Cedrus has been allied with the firs (genus Abies), however, work done in the early 2000’s suggests that Cedrus may actually be sister to all other Pinaceae. We need more data before anything can be said with certainty.

  Cedrus atlantica

Cedrus atlantica

Regardless, two of these cedars - C. atlantica & C. libani - are threatened with extinction. Centuries of over-harvesting, over-grazing, and unsustainable fire regimes have taken their toll on wild populations. Much of what remains is not considered old growth. Gone is the heyday of giant cedar forests. Luckily, many populations are now located in protected areas and reforestation efforts are being put into place throughout their range. Still, the ever present threat of climate change is causing massive pest outbreaks in these forests. The future for these trees hangs in the balance.

Photo Credit: Wikimedia Commons

Further Reading: [1] [2] [3]

The Plight of the African Violets

b7c6396f1c0aa324200936f345c0194d.jpg

For many of us, African violets (Saintpaulia spp.) are some of the first houseplants we learned how to grow. They are not true violets (Violaceae), of course, but rather members of the family Gesneriaceae. Nonetheless, their compact rosettes of fuzzy leaves coupled with regular sprays of colorful flowers has made them a multi-million dollar staple of the horticultural industry. Unfortunately their numbers in captivity overshadow a bleak future for this genus in the wild. Many African violets are teetering on the brink of extinction.

The genus Saintpaulia is endemic to a small portion of east Africa, with a majority of species being found growing at various elevations throughout the Eastern Arc Mountains of Kenya and Tanzania. Most of the plants we grow at home are clones and hybrids of two species, S. ionantha and S. confusa. Collected in 1892, these two species were originally thought to be the same species, S. ionantha, until a prominent horticulturist noted that there are distinct differences in the seed capsules each produced. Since the 1890's, more species have been discovered.

  Saintpaulia goetzeana

Saintpaulia goetzeana

Exactly how many species comprise this genus is still up for some debate. Numbers range from as many as 20 to as few as 6. Much of the early work on describing various Saintpaulia species involved detailed descriptions of the density and direction of hairs on the leaves. More recent genetic work considers some of these early delineations to be tenuous at best, however, even these modern techniques have resolved surprisingly little when it comes to a species concept within this group.

  Saintpaulia  sp.  in situ .

Saintpaulia sp. in situ.

Though it can be risky to try and make generalizations about an entire genus, there are some commonalities when it comes to the habitats these plants prefer. Saintpaulia grow at a variety of elevations but most can be found growing on rocky outcrops. Most of them prefer growing in the shaded forest understory, hence they do so well in our (often) poorly lit homes. Their affinity for growing on rocks means that many species are most at home growing on rocks and cliffs near streams and waterfalls. The distribution of most Saintpaulia species is quite limited, with most only known from a small region of forest or even a single mountain. Its their limited geographic distribution that is cause for concern.

  Saintpaulia ionantha  subsp.  grotei in situ.

Saintpaulia ionantha subsp. grotei in situ.

Regardless of how many species there are, one fact is certain - many Saintpaulia risk extinction if nothing is done to save them. Again, populations of Saintpaulia species are often extremely isolated. Though more recent surveys have revealed that a handful of lowland species are more widespread than previously thought, mid to highland species are nonetheless quite restricted in their distribution. Habitat loss is the #1 threat facing Saintpaulia. Logging, both legal and illegal, and farming are causing the diverse tropical forests of eastern Africa to shrink more and more each year. As these forests disappear, so do Saintpaulia and all of the other organisms that call them home.

There is hope to be had though. The governments of Kenya and Tanzania have recognized that too much is being lost as their forests disappear. Stronger regulations on logging and farming have been put into place, however, enforcement continues to be an issue. Luckily for some Saintpaulia species, the type localities from which they were described are now located within protected areas. Protection coupled with inaccessibility may be exactly what some of these species need to survive. Also, thanks to the ease in which Saintpaulia are grown, ex situ conservation is proving to be a viable and valuable option for conserving at least some of the genetic legacy of this genus.

  Saintpaulia intermedia

Saintpaulia intermedia

It is so ironic to me that these plants can be so common in our homes and offices and yet so rare in the wild. Despite their popularity, few recognize the plight of this genus. My hope is that, in reading this, many of you will think about what you can do to protect the legacy of plants like these and so many others. Our planet and the species that call it home are doomed without habitat in which to live and reproduce. This is why land conservation is an absolute must. Consider donating to a land conservation organization today. Here are two worth your consideration:

The Nature Conservancy

The Rainforest Trust

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4] [5]

The Carnivorous Dewy Pine

19446001581_6e47ef8d27_o.jpg

The dewy pine is definitely not a pine, however, it is quite dewy. Known scientifically as Drosophyllum lusitanicum, this carnivore is odd in more ways than one. It is also growing more and more rare each year.

One of the strangest aspects of dewy pine ecology is its habitat preferences. Whereas most carnivorous plants enjoy growing in saturated soils or even floating in water, the dewy pine's preferred habitats dry up completely for a considerably portion of the year. Its entire distribution consists of scattered populations throughout the western Iberian Peninsula and northwest Morocco.

Drosophyllum_lusitanicum_Plantas_2011-5-22_SierraMadrona.jpg

Its ability to thrive in such xeric conditions is a bit of a conundrum. Plants stay green throughout the year and produce copious amounts of sticky mucilage as a means of catching prey. During the summer months, both air and soil temperatures can skyrocket to well over 100°F (37 °C). Though they possess a rather robust rooting system, dewy pines don't appear to produce much in the way of fine roots. Because of this, any ground water presence deeper in the soil is out of their reach. How then do these plants manage to function throughout the driest parts of the year?

During the hottest months, the only regular supply of water comes in the form of dew. Throughout the night and into early morning, temperatures cool enough for water to condense out of air. Dew covers anything with enough surface area to promote condensation. Thanks to all of those sticky glands on its leaves, the dewy pine possesses plenty of surface area for dew to collect. It is believed that, coupled with the rather porous cuticle of the surface of its leaves, the dewy pine is able to obtain water and reduce evapotranspiration enough to keep itself going throughout the hottest months. 

 Dewy pine leaves unfurl like fern fiddle heads as they grow.

Dewy pine leaves unfurl like fern fiddle heads as they grow.

As you have probably guessed at this point, those dewy leaves do more than photosynthesize and collect water. They also capture prey. Carnivory in this species evolved in response to the extremely poor conditions of their native soils. Nutrients and minerals are extremely low, thus selecting for species that can acquire these necessities via other means. Each dewy pine leaf is covered in two types of glands: stalked glands that produce sticky mucilage, and sessile glands that secrete digestive enzymes and absorb nutrients.

Their ability to capture insects far larger than one would expect is quite remarkable. The more an insect struggles, the more it becomes ensnared. The strength of the dewy pines mucilage likely stems from the fact that the leaves do not move like those of sundews (Drosera spp.). Once an insect is stuck, there is not much hope for its survival. Living in an environment as extreme as this, the dewy pine takes no chances.

Drosophyllum_lusitanicum_concurso_reserva_biosfera.jpg

The taxonomic affinity of the dewy pine has been a source of confusion as well. Because of its obvious similarity to the sundews, the dewy pine has long been considered a member of the family Droseraceae. However, although recent genetic work does suggest a distant relationship with Droseraceae and Nepenthaceae, experts now believe that the dewy pine is unique enough to warrant its own family. Thus, it is now the sole species of the family Drosophyllaceae.

Sadly, the dewy pine is losing ground fast. From industrialization and farming to fire suppression, dewy pines are running out of habitat. It is odd to think of a plant capable of living in such extreme conditions as being overly sensitive but that is the conundrum faced by more plants than just the dewy pine. Without regular levels of intermediate disturbance that clear the landscape of vegetation, plants like the dewy pine quickly get outcompeted by more aggressive plant species. Its the fact that dewy pine can live in such hostile environments that, historically, has kept its populations alive and well.

Drosophyllum_lusitanicum_Habitus_2011-4-21_SierraMadrona.jpg

What's more, it appears that dewy pines have trouble getting their seeds into new habitats. Low seed dispersal ability means populations can be cut off from suitable habitats that are only modest distances away. Without a helping hand, small, localized populations can disappear alarmingly fast. The good news is, conservationists are working hard on identifying what must be done to ensure the dewy pine is around for future generations to enjoy.

Changes in land use practices, prescribed fires, wild land conservation, and incentives for cattle farmers to adopt more traditional rather than industrial grazing practices may turn the table on dewy pine extinction. Additionally, dewy pines have become a sort of horticultural oddity over the last decade or so. As dedicated growers perfect germination and growing techniques, ex situ conservation can help maintain stocks of genetic material around the globe.

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4]

 

 

Cycad Pollinators

8406039152_0380bd9ae3_o.jpg

When it comes to insect pollination, flowering plants get all of the attention. However, flowers aren't the only game in town. More and more we are beginning to appreciate the role insects play in the pollination of some gymnosperm lineages. For instance, did you know that many cycad species utilize insects as pollen vectors? The ways in which these charismatic gymnosperms entice insects is absolutely fascinating and well worth understanding in more detail.

Cycads or cycad-like plants were some of the earliest gymnosperm lineages to arise on this planet. They did so long before familiar insects like bees, wasps, and butterflies came onto the scene. It had long been assumed that, like a vast majority of extant gymnosperms, cycads relied on the wind to get pollen from male cones to female cones. Indeed, many species certainly utilize to wind to one degree or another. However, subsequent work on a few cycad genera revealed that wind might not cut it in most cases.

 White-haired cycad ( Encephalartos friderici-guilielm i)

White-haired cycad (Encephalartos friderici-guilielmi)

It took placing living cycads into wind tunnels to obtain the first evidence that something strange might be going on with cycad pollination. The small gaps on the female cones were simply too tight for wind-blown pollen to make it to the ovules. Around the same time, researchers began noting the production of volatile odors and heat in cycad cones, providing further incentives for closer examination.

Subsequent research into cycad pollination has really started to pay off. By excluding insects from the cones, researchers have been able to demonstrate that insects are an essential factor in the pollination of many cycad species. What's more, often these relationships appear to be rather species specific.

  Cycadophila yunnanensis ,  C. nigra , and other beetles on a cone of  Cycas  sp.

Cycadophila yunnanensis, C. nigra, and other beetles on a cone of Cycas sp.

By far, the bulk of cycad pollination services are being performed by beetles. This makes a lot of sense because, like cycads, beetles evolved long before bees or butterflies. Most of these belong to the superfamily Cucujoidea as well as the true weevils (Curculionidae). In some cases, beetles utilize cycad cones as places to mate and lay eggs. For instance, male and female cones of the South African cycad Encephalartos friderici-guilielmi were found to be quite attractive to at least two beetle genera. 

Beetles and their larvae were found on male cones only after they had opened and pollen was available. Researchers were even able to observe adult beetles emerging from pupae within the cones, suggesting that male cones of E. friderici-guilielmi function as brood sites. Adult beetles carrying pollen were seen leaving the male cones and visiting the female cones. The beetles would crawl all over the fuzzy outer surface of the female cones until they became receptive. At that point, the beetles wriggle inside and deposit pollen. Seed set was significantly lower when beetles were excluded.

 Male cone of  Zamia furfuracea  with a mating (lek) assembly of  Rhopalotria mollis  weevils.

Male cone of Zamia furfuracea with a mating (lek) assembly of Rhopalotria mollis weevils.

For the Mexican cycad Zamia furfuracea, weevils also utilize cones as brood sites, however, the female cones go to great lengths to protect themselves from failed reproductive efforts. The adult weevils are attracted to male cones by volatile odors where they pick up pollen. The female cones are thought to also emit similar odors, however, larvae are not able to develop within the female cones. Researchers attribute this to higher levels of toxins found in female cone tissues. This kills off the beetle larvae before they can do too much damage with their feeding. This way, the cycad gets pollinated and potentially harmful herbivores are eliminated. 

Beetles also share the cycad pollination spotlight with another surprising group of insects - thrips. Thrips belong to an ancient order of insects whose origin dates back to the Permian, some 298 million years ago. Because they are plant feeders, thrips are often considered pests. However, for Australian cycads in the genus Macrozamia, they are important pollinators.

  Macrozamia macleayi  female cone.

Macrozamia macleayi female cone.

Thrip pollination was studied in detail in at least two Macrozamia species, M. lucida and M. macleayi. It was noted that the male cones of these species are thermogenic, reaching peak temperatures of around   104 °F (40 °C). They also produce volatile compounds like monoterpenes as well as lots of CO2 and water vapor during this time. This spike in male cone activity also coincides with a mass exodus of thrips living within the cones.

 Thrips ( Cycadothrips chadwicki ) leaving a thermogenic pollen cone of  Macrozamia lucida.

Thrips (Cycadothrips chadwicki) leaving a thermogenic pollen cone of Macrozamia lucida.

Thrips apparently enjoy cool, dry, and dark places to feed and breed. That is why they love male Macrozamia cones. However, if the thrips were to remain in the male cones only, pollination wouldn't occur. This is where all of that male cone metabolic activity comes in handy. Researchers found that the combination of rising heat and humidity, and the production of monoterpenes aggravated thrips living within the male cones, causing them to leave the cones in search of another home.

Inevitably many of these pollen-covered thrips find themselves on female Macrozamia cones. They crawl inside and find things much more to their liking. It turns out that female Macrozamia cones do not produce heat or volatile compounds. In this way, Macrozamia are insuring pollen transfer between male and female plants.

 Thrips up close.

Thrips up close.

Pollination in cycads is a fascinating subject. It is a reminder that flowering plants aren't the only game in town and that insects have been providing such services for eons. Additionally, with cycads facing extinction threats on a global scale, understanding pollination is vital to preserving them into the future. Without reproduction, species will inevitably fail. Many cycads have yet to have their pollinators identified. Some cycad pollinators may even be extinct. Without boots on the ground, we may never know the full story. In truth, we have only begun to scratch the surface of cycads and their pollinators.

Photo Credits: [1] [2] [3] [4] [5] [6] [7]

Further Reading: [1] [2] [3] [4] [5] [6]

Meet the Crypts

26165576_2033477836679071_8698732942376159621_n.jpg

If you have ever spent time in an aquarium store, you have undoubtedly come across a Cryptocoryne or two. Indeed, these plants are most famous for their indispensable role in aquascaping freshwater aquaria. As organisms, however, crypts receive considerably less attention. Nonetheless, a handful of dedicated botanists have devoted time and effort to understanding this wonderful genus of tropical Aroids. What follows is a brief introduction to the world of Cryptocoryne plants. 

Cryptocoryne is a genus that currently consists of around 60 - 65 species, all of which are native to tropical regions of Asia and New Guinea. Every few years it seems at least one or two new species are added to this list and without a doubt, more species await discovery. All crypts are considered aquatic to one degree or another. Ecologically speaking, however, species fall into four broad categories based on the types of habitats they prefer.

  Cryptocoryne cognata in situ .

Cryptocoryne cognata in situ.

The most familiar crypts grow along the banks of slow-moving rivers and streams and find themselves submerged for a large portion of their life. Others grow in seasonally flooded habitats and experience a pronounced dry season. These species usually go dormant until flood waters return. Still others can be found growing in swampy forested habitats, often in acidic peat swamps. Finally, a few crypts have adapted to living in tidal zones in both fresh and brackish waters.

Like all aquatic plants, crypts face a lot of challenges living in water. One of the biggest challenges is reproduction. Despite their aquatic nature, crypts will not flower successfully underwater. If growing submerged, most crypt species reproduce vegetatively via a creeping rhizome. As such, crypts often form large, clonal colonies in both the wild and in aquaria, a fact that has made a few crypts aggressive invaders in places like Florida.

  Cryptocoryne wendtii  is one of the most common species in the aquarium trade. Its textured leaves are thought to have a higher surface area, allowing this plant to thrive in shaded aquatic habitats.

Cryptocoryne wendtii is one of the most common species in the aquarium trade. Its textured leaves are thought to have a higher surface area, allowing this plant to thrive in shaded aquatic habitats.

Given proper hydrologic cycles, however, crypts will flower and when they do, it is truly a sight to behold. As is typical of aroids, crypts produce an inflorescence comprised of a spadix with whirls of male and female flowers covered by a decorative sheath called a spathe. This spathe is the key to successful flowering among the various crypt species.

 Species like  C. becketti  have become invasive in places like Florida, no doubt thanks to aquarium hobbyists.

Species like C. becketti have become invasive in places like Florida, no doubt thanks to aquarium hobbyists.

If the spathe were to open underwater, the inflorescence would quickly rot. Instead, most crypts seem to have an uncanny ability to sense water levels. At early stages of development, the spathe completely encloses the developing spadix in a water tight package. The tubular spathe continues to grow upward until the top has breached the surface. Consequently, the overall length of a crypt inflorescence is highly variable depending on the water level of its habitat. Crypts living in tidal zones take this a step further. Somehow they are able to time their flowering events to the ebb and flow of the tides, only producing flowers during periods of the month when tides are at their lowest.

  Cryptocoryne ligua

Cryptocoryne ligua

With the tip of the inflorescence safely above water, the spathe will finally open revealing their surprisingly complex anatomy and coloration. It is a shame that most crypt growers never get to see such floral splendor in person. The spathe of many crypt species emit a faint but unpleasant odor. Additionally, some species adorn the spathe with fringes that, coupled with stark coloration, is thought to improve the chances of pollinator visitation.

Pollinators are poorly studied among crypts, however, it is thought that small flies take up the bulk of the work. Lured in by the promise of a rotting meal on which they can feed and lay their eggs, the flies become trapped inside the long tube of the spathe. Like the pitfall traps of a pitcher plant, the inner walls of the spathe are coated in a waxy substance that keeps the insects from crawling out before they do their job.

In general, the female flowers mature first. If the insect inside has visited a crypt of the same species the day before, it is likely carrying pollen and thus deposits said pollen onto the stigmas of the current crypt. After the female flowers have had a chance at being fertilized, the male flowers then mature. The insects inside are then dusted with new pollen, the walls of the spathe lose their slippery properties, and the insects are released in hopes of repeated the process again.

 The fruit of a  Cryptocoryne  is called a syncarp.

The fruit of a Cryptocoryne is called a syncarp.

To the best of my knowledge, most crypts are not self-compatible. Instead, plants must receive pollen from unrelated individuals to set seed. Because large crypt colonies are often made up of clones of a single mother plant, sexual reproduction can be rather infrequent among the various species. Nonetheless sexual reproduction does occur and the seeds are produced in a different way than most other aroids. Instead of berries, crypts produce their seeds in a aggregated collection of fruits called a syncarp. When ripe, the syncarp opens like a little star and the seeds float away on the current.

One species, Cryptocoryne ciliata, takes seed production to a whole different level by producing viviparous seeds. Before the syncarp even opens, the seeds actually germinate on the mother plant. In this way, tiny seedlings complete with roots and leaves are released instead of seeds. Seedlings have a much greater surface area than seeds and readily get stuck in mud as well as other aquatic vegetation. In this way, C. ciliata offspring get a jump start on the establishment process. It is no wonder then that C. ciliata has one of the widest distributions of any of the crypt species.

  Cryptocoryne ciliata

Cryptocoryne ciliata

Despite plenty of overlap among the ranges of various crypt species, the genus displays an amazing array of variation. Some have likened crypts to Araceae's version of Darwin's finches in that the unique ecology of each species appears to have created barriers to species introgression. Though hybrids do occur, each crypt seems to maintain its own niche via a unique habitat requirement, differing flower phenology, or a specific set of pollinators. It would appear that much can be learned about the mechanics of speciation by studying the various Cryptocoryne and their habits.

Unfortunately, the limited geographic distribution and specific habitat requirements of crypt species is cause for concern. Many are growing more and more rare as human settlements expand and destroy valuable crypt habitat. As popular as some crypts may be in cultivation, many others have proven too idiosyncratic to grow on a commercial level. More work is certainly needed to properly assess populations and bring plants into cultivation as a form of ex situ conservation.

  Cryptocoryne cordata  Var. Siamensis 'Rosanervig' is a contoversial variety names recognized by the stark patterns of venation on its leaves.

Cryptocoryne cordata Var. Siamensis 'Rosanervig' is a contoversial variety names recognized by the stark patterns of venation on its leaves.

Proper study is further complicated by the fact that many crypt species are highly plastic. They have to be in order to survive the rigors of their aquatic environment. True species identification can really only be assessed when flowers are present and some populations seem to prefer vegetative over sexual reproduction a majority of the time. A multitude of subspecies exist, though the degree to which they should be formally recognized is up for debate.

I think it is safe to say that Cryptocoryne is a genus worth far more attention than it currently receives. They are without a doubt important components of the ecology of their native habitats and humans would do well to understand them a bit better. With a bit more attention from botanical gardens and other conservation organizations, perhaps the future for many crypts does not have to be so bleak.

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4] [5]

 

Saving One of North America's Rarest Shrubs

Arctostaphylos_franciscana_3.jpg

The chance to save a species from certain extinction cannot be wasted. When the opportunity presents itself, I believe it is our duty to do so. Back in 2010, such an opportunity presented itself to the state of California and what follows is a heroic demonstration of the lengths dedicated individuals will go to protect biodiversity. Thought to be extinct for 60 years, the Franciscan manzanita (Arctostaphylos franciscana) has been given a second chance at life on this planet.

California is known the world over for its staggering biodiversity. Thanks to a multitude of factors that include wide variations in soil and climate types, California boasts an amazing variety of plant life. Some of the most Californian of these plants belong to a group of shrubs and trees collectively referred to as 'manzanitas.' These plants are members of the genus Arctostaphylos, which hails from the family Ericaceae, and sport wonderful red bark, small green leaves, and lovely bell-shaped flowers. Of the approximately 105 species, subspecies, and varieties of manzanita known to science, 95 of them can be found growing in California.

It has been suggested that manzanitas as a whole are a relatively recent taxon, having arisen sometime during the Middle Miocene. This fact complicates their taxonomy a bit because such a rapid radiation has led manzanita authorities to recognize a multitude of subspecies and varieties. In California, there are also many endemic species that owe their existence in part to the state's complicated geologic history. Some of these manzanitas are exceedingly rare, having only been found growing in one or a few locations. Sadly, untold species were probably lost as California was settled and human development cleared the land. 

Such was the case for the Franciscan manzanita. Its discovery dates back to the late 1800's. California botanist and manzanita expert, Alice Eastwood, originally collected this plant on serpentine soils around the San Francisco Bay Area. In the years following, the growing human population began putting lots of pressure on the surrounding landscape.

Arctostaphylos_franciscana_-_Regional_Parks_Botanic_Garden,_Berkeley,_CA_-_DSC04529.jpg

Botanists like Eastwood recognized this and went to work doing what they could to save specimens from the onslaught of bulldozers. Luckily, the Franciscan manzanita was one such species. A few individuals were dug up, rooted, and their progeny were distributed to various botanical gardens. By the 1940's, the last known wild population of Franciscan manzanita were torn up and replaced by the unending tide of human expansion into the Bay Area.

It was apparent that the Franciscan manzanita was gone for good. Nothing was left of its original populations outside of botanical gardens. It was officially declared extinct in the wild. Decades went by without much thought for this plant outside of a few botanical circles. All of that changed in 2009.

It was in 2009 when a project began to replace a stretch of roadway called Doyle Drive. It was a massive project and a lot of effort was invested to remove the resident vegetation from the site before work could start in earnest. Native vegetation was salvaged to be used in restoration projects but most of the clearing involved the removal of aggressive roadside trees. A chipper was brought in to turn the trees into wood chips. Thanks to a bit of serendipity, a single area of vegetation bounded on all sides by busy highway was spared from wood chip piles. Apparently the only reason for this was because a patrol car had been parked there during the chipping operation.

Cleared of tall, weedy trees, this small island of vegetation had become visible by road for the first time in decades. That fall, a botanist by the name of Daniel Gluesenkamp was driving by the construction site when he noticed an odd looking shrub growing there. Luckily, he knew enough about manzanitas to know something was different about this shrub. Returning to the site with fellow botanists, Gluesenkamp and others confirmed that this odd shrubby manzanita was in fact the sole surviving wild Franciscan manzanita. Needless to say, this caused a bit of a stir among conservationists.

median arc.JPG

The shrub had obviously been growing in that little island of serpentine soils for quite some time. The surrounding vegetation had effectively concealed its presence from the hustle and bustle of commuters that crisscross this section of on and off ramps every day. Oddly enough, this single plant likely owes its entire existence to the disturbance that created the highway in the first place. Manzanitas lay down a persistent seed bank year after year and those seeds can remain dormant until disturbance, usually fire but in this case road construction, awakens them from their slumber. It is likely that road crews had originally disturbed the serpentine soils just enough that this single Franciscan manzanita was able to germinate and survive.

The rediscovery of the last wild Franciscan manzanita was bitter sweet. On the one hand, a species thought extinct for 60 years had been rediscovered. On the other hand, this single individual was extremely stressed by years of noxious car exhaust and now, the sudden influx of sunlight due to the removal of the trees that once sheltered it. What's more, this small island of vegetation was doomed to destruction due to current highway construction. It quickly became apparent that if this plant had any chance of survival, something drastic had to be done.

Many possible rescue scenarios were considered, from cloning the plant to moving bits of it into botanical gardens. In the end, the most heroic option was decided on - this single Franciscan manzanita was going to be relocated to a managed natural area with a similar soil composition and microclimate.

Moving an established shrub is not easy, especially when that particular individual is already stressed to the max. As such, numerous safeguards were enacted to preserve the genetic legacy of this remaining wild individual just in case it did not survive the ordeal. Stem cuttings were taken so that they could be rooted and cloned in a lab. Rooted branches were cut and taken to greenhouses to be grown up to self-sustaining individuals. Numerous seeds were collected from the surprising amount of ripe fruits present on the shrub that year. Finally, soil containing years of this Franciscan manzanita's seedbank as well as the microbial community associated with the roots, were collected and stored to help in future reintroduction efforts.

A fran rescue.JPG

Finally, the day came when the plant was to be dug up and moved. Trenches were dug around the root mass and a dozen metal pipes were driven into the soil 2 feet below the plant so that the shrub could safely be separated from the soil in which it had been growing all its life. These pipes were then bolted to I-beams and a crane was used to hoist the manzanita up and out of the precarious spot that nurtured it in secret for all those years.

Upon arriving at its new home, experts left nothing to chance. The shrub was monitored daily for the first ten days of its arrival followed by continued weekly visits after that. As anyone that gardens knows, new plantings must be babied a bit before they become established.  For over a year, this single shrub was sheltered from direct sun, pruned of any dead and sickly branches, and carefully weeded to minimize competition. Amazingly, thanks to the coordinated effort of conservationists, the state of California, and road crews, this single individual lives on in the wild.

Of course, one single individual is not enough to save this species from extinction. At current, cuttings, and seeds provide a great starting place for further reintroduction efforts. Similarly, and most importantly, a bit of foresight on the part of a handful of dedicated botanists nearly a century ago means that the presence of several unique genetic lines of this species living in botanical gardens means that at least some genetic variability can be introduced into the restoration efforts of the Franciscan manzanita.

In an ideal world, conservation would never have to start with a single remaining individual. As we all know, however, this is not an ideal world. Still, this story provides us with inspiration and a sense of hope that if we can work together, amazing things can be done to preserve and restore at least some of what has been lost. The Franciscan manzanita is but one species that desperately needs our help an attention. It is a poignant reminder to never give up and to keep working hard on protecting and restoring biodiversity.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3] [4]

 

Daffodil Insights

4473335340_3d44fc9824_o.jpg

Daffodils seem to be everywhere. Their horticultural popularity means that, for many of us, these plants are among the first flowers we see each spring. Daffodils are so commonplace that it's as if they evolved to live in our gardens and nowhere else. Indeed, daffodils have had a long, long history with human civilization, so much so that it is hard to say when our species first started to cohabitate. Our familiarity with these plants belies an intriguing natural history. What follows is a brief overview of the world of daffodils. 

If you are like me, then you may have gone through most of your life not noticing much difference between garden variety daffodils. Though many of us will be familiar with only a handful of daffodil species and cultivars, these introductions barely scratch the surface. One may be surprised to learn that as of 2008, more than 28,000 daffodil varieties have been named and that number continues to grow each and every year. Even outside of the garden, there is some serious debate over the number of daffodil species, much of this having to do with what constitutes a species in this group.

  Narcissus poeticus

Narcissus poeticus

As I write this, all daffodils fall under the genus Narcissus. Estimates as to the number of species within Narcissus range from as few as 50 to as many as 80. The genus itself sits within the family Amaryllidaceae and is believed to have originated somewhere between the late Oligocene and early Miocene, some 18 to 30 million years ago. Despite its current global distribution, Narcissus are largely Mediterranean plants, with peak diversity occurring on the Iberian Peninsula. However, thanks to the aforementioned long and complicated history in cultivation, it has become quite difficult to understand the full range of diversity in form and habitat of many species. To understand this, we first need to understand a bit about their reproductive habits.

Much of the evolution of Narcissus seems to center around floral morphology and geographic isolation. More specifically, the length of the floral tube or "corona" and the position of the sexual organs within, dictates just who can effectively pollinate these plants. The corona itself is not made up of petals or sepals but instead, its tube-like appearance is due to a fusion of the stamens into the famous trumpet-like tube we know and love.

Illustration_Narcissus_poeticus0.jpg

Variation in corona shape and size has led to the evolution of three major pollination strategies within this genus. The first form is the daffodil form, whose stigma is situated at the mouth of the corolla, well beyond the 6 anthers. This form is largely pollinated by larger bees. The second form is the paperwhite form, whose stigma is situated more closely to or completely below the anthers at the mouth of the corona. This form is largely pollinated by various Lepidoptera as well as long tongued bees and flies. The third form is the triandrus form, which exhibits three distinct variations on stigma and anther length, all of which are situated deep within the long, narrow corona. The pendant presentation of the flowers in this group is thought to restrict various butterflies and moths from entering the flower in favor of bees.

  Narcissus tazetta

Narcissus tazetta

The variations on these themes has led to much reproductive isolation among various Narcissus populations. Plants that enable one type of pollinator usually do so at the exclusion of others. Reproductive isolation plus geographic isolation brought on by differences in soil types, habitat types, and altitudinal preferences is thought to have led to a rapid radiation of these plants across the Mediterranean. All of this has gotten extremely complicated ever since humans first took a fancy to these bulbs.

  Narcissus cyclamineus

Narcissus cyclamineus

Reproductive isolation is not perfect in these plants and natural hybrid zones do exist where the ranges of two species overlap. However, hybridization is made much easier with the helping hand of humans. Whether via landscape disturbance or direct intervention, human activity has caused an uptick in Narcissus hybridization. For centuries, we have been mixing these plants and moving them around with little to no record as to where they originated. What's more, populations frequently thought of as native are actually nothing more than naturalized individuals from ancient, long-forgotten introductions. For instance, Narcissus populations in places like China, Japan, and even Great Britain originated in this manner.

All of this mixing, matching, and hybridizing lends to some serious difficulty in delineating species boundaries. It would totally be within the bounds of reason to ask if some of the what we think of as species represent true species or simply geographic varieties on the path to further speciation. This, however, is largely speculative and will require much deeper dives into Narcissus phylogenetics.

  Narcissus triandrus

Narcissus triandrus

Despite all of the confusion surrounding accurate Narcissus taxonomy, there are in fact plenty of true species worth getting to know. These range in form and habit far more than one would expect from horticulture. There are large Narcissus, small Narcissus, there are Narcissus with yellow flowers and Narcissus with white flowers, some with upright flowers and some with pendant flowers. There are even a handful of fall blooming Narcissus. The variety of this genus is staggering if you are not prepared for it.

  Narcissus viridiflorus  - a green, fall-blooming daffodil

Narcissus viridiflorus - a green, fall-blooming daffodil

After pollination, the various Narcissus employ a seed dispersal strategy that doesn't get talked about enough in reference to this group. Attached to each hard, black seed are fatty structures known as eliasomes. Eliasomes attract ants. Like many spring flowering plant species around the globe, Narcissus utilize ants as seed dispersers. Ants pick up the seeds and bring them back to their nests. They go about removing the eliasomes and then discard the seed. The seed, safely tucked away in a nutrient-rich ant midden, has a much higher chance of germination and survival than if things were left up to simple chance. It remains to be seen whether or not Narcissus obtain similar seed dispersal benefits from ants outside of their native range. Certainly Narcissus populations persist and naturalize readily, however, I am not aware if ants have any part in the matter.

 The endangered  Narcissus alcaracensis .

The endangered Narcissus alcaracensis.

Despite their popularity in the garden, many Narcissus are having a hard go of it in the wild. Habitat destruction, climate change, and rampant collecting of wild bulbs are having serious impacts on Narcissus numbers. The IUCN considered at least 5 species to be endangered and a handful of some of the smaller species already thought to be extinct in the wild. In response to some of these issues, protected areas have been established that encompass at least some of the healthy populations that remain for some of these species.

If you are anything like me, you have ignored Narcissus for far too long. Sure, they aren't native to the continent on which I live, and sure, they are one of the most commonly used plants in a garden setting, but every species has a story to tell. I hope that, armed with this new knowledge, you at least take a second look at the Narcissus popping up around your neighborhood. More importantly, I hope this introduction makes you appreciate their wild origins and the fact that we still have much to learn about these plants. I have barely scratched the surface of this genus and there is more more information out there worth perusing. Finally, I hope we can do better for the wild progenitors of our favorite garden plants. They need all the help they can get and unless we start speaking up and working to preserve wild spaces, all that will remain are what we have in our gardens and that is not a future I want to be a part of.

Photo Credits: [1] [2] [3] [4] [5] [6] [7]

Further Reading: [1] [2] [3] [4] [5] [6] [7] [8] [9]

 

The Other Pawpaws

  Asimina tetramera

Asimina tetramera

The pawpaw (Asimina triloba) has been called "America's forgotten fruit." Once quite popular among Native Americans and settlers alike, it fell out of the public eye until quite recently. If one considers the pawpaw "forgotten" then its relatives have been straight up ignored. Indeed, the pawpaw shares the North American continent with 10 other Asimina species. 

  Asimina angustifolia

Asimina angustifolia

The genus Asimina belongs to a family of plants called the custard apple family - Annonaceae. It is a large family that mostly resides in the tropics. In fact, the genus Asimina is the only group to occur outside of the tropics. Though A. triloba finds itself growing as far north as Canada, the other species within this genus are confined to southeastern North America in coastal plain communities. 

  Asimina parviflora

Asimina parviflora

As I mentioned above, there are 10 other species in the genus and at least one naturally occurring hybrid. For the most part, they all prefer to grow where regular fires keep competing vegetation at bay. They are rather small in stature, usually growing as shrubs or small, spindly trees. They can be rather inconspicuous until it comes time to flower.

  Asimina obovata

Asimina obovata

The flowers of the various Asimina species are relatively large and range in color from bright white to deep red, though the most common flower color seems to be creamy white. The flowers themselves give off strange odors that have been affectionately likened to fermenting fruit and rotting meat. Of course, these odors attract pollinators. Asimina aren't much of a hit with bees or butterflies. Instead, they are mainly visited by blowflies and beetles. 

  Asimina pygmaea

Asimina pygmaea

As is typical of the family, all of the Asimina produce relatively large fruits chock full of hard seeds. Seed dispersal for the smaller species is generally accomplished through the help of mammals like foxes, coyotes, raccoons, opossums, and even reptiles such as the gopher tortoise. Because the coastal plain of North America is a fire-prone ecosystem, most of the Asimina are well adapted to cope with its presence. In fact, most require it to keep their habitat open and free of too much competition. At least one species, A. tetramera, is considered endangered in large part due to fire sequestration.

  Asimina reticulata

Asimina reticulata

All of the 11 or so Asimina species are host plants for the zebra swallowtail butterfly (Eurytides marcellus) and the pawpaw sphinx moth (Dolba hyloeus). The specialization of these two insects and few others has to do with the fact that all Asimina produce compounds called acetogenins, which act as insecticides. As such, only a small handful of insects have adapted to be able to tolerate these toxic compounds. 

  Asimina tetramera

Asimina tetramera

Sadly, like all other denizens of America's coastal plain forest, habitat destruction is taking its toll on Asimina numbers. As mentioned above, at least one species (A. tetramera) is considered endangered. We desperately need to protect these forest habitats. Please support a local land conservation organization like the Partnership For Southern Forestland Conservation today!

See a list of the Asimina of North America here: [1] 

Photo Credits: Wikimedia Commons

Further Reading: [1] [2] [3] [4] [5]

An Endangered Iris With An Intriguing Pollination Syndrome

iris1.JPG

The Golan iris (Iris hermona) is a member of the Oncocyclus section, an elite group of 32 Iris species native to the Fertile Crescent region of southwestern Asia. They are some of the showiest irises on the planet. Sadly, like many others in this section, the Golan iris is in real danger of going extinct.

The Golan iris has a rather limited distribution. Despite being named in honor of Mt. Hermon, it is restricted to the Golan Heights region of northern Israel and southwestern Syria. Part of the confusion stems from the fact that the Golan iris has suffered from a bit of taxonomic uncertainty ever since it was discovered. It is similar in appearance to both I. westii and I. bismarckiana with which it is frequently confused. In fact, some authors still consider I. hermona to be a variety of I. bismarckiana. This has led to some serious issues when trying to assess population numbers. Despite the confusion, there are some important anatomical differences between these plants, including the morphology of their rhizomes and the development of their leaves. Regardless, if these plants are in fact different species, it means their respective numbers in the wild decrease dramatically. 

PikiWiki_Israel_42124_Iris_Hermona.JPG

Like other members of the Oncocyclus group, the Golan iris exhibits an intriguing pollination syndrome with a group of bees in the genus Eucera. Their large, showy flowers may look like a boon for pollinators, however, close observation tells a different story. The Golan iris and its relatives receive surprisingly little attention from most of the potential pollinators in this region.

One reason for their lack of popularity has to do with the rewards (or lack thereof) they offer potential visitors. These irises produce no nectar and very little pollen. Because of this and their showy appearance, most pollinators quickly learn that these plants are not worth the effort. Instead, the only insects that ever pay these large blossoms any attention are male Eucerine bees. These bees aren't looking for food or fragrance, however. Instead, they are looking for a place to rest. 

 A Eucerine bee visiting a nectar source. 

A Eucerine bee visiting a nectar source. 

The Oncocyclus irises cannot self pollinate, which makes studying potential pollinators a bit easier. During a 5 year period, researchers noted that male Eucerine bees were the only insects that regularly visited the flowers and only after their visits did the plants set seed. The bees would arrive at the flowers around dusk and poke around until they found one to their liking. At that point they would crawl down into the floral tube and would not leave again until morning. The anatomy of the flower is such that the bees inevitably contact stamen and stigma in the process. Their resting behavior is repeated night after night until the end of the flowering season and in this way pollination is achieved. Researchers now believe that the Golan iris and its relatives are pollinated solely by these sleeping male bees.

Sadly, the status of the Golan iris is rather bleak. As recent as the year 2000, there were an estimated 2,000 Golan irises in the wild. Today that number has been reduced to a meager 350 individuals. Though there is no single smoking gun to explain this precipitous decline, climate change, cattle grazing, poaching, and military activity have exacted a serious toll on this species. Plants are especially vulnerable during drought years. Individuals stressed by the lack of water succumb to increased pressure from insects and other pests. Vineyards have seen an uptick in Golan in recent years as well, gobbling up viable habitat in the process.

PikiWiki_Israel_42126_Iris_Hermona.JPG

It is extremely tragic to note that some of the largest remaining populations of Golan irises can be found growing in active mine fields. It would seem that one of the only safe places for these endangered plants to grow are places that are extremely lethal to humans. It would seem that our propensity for violent tribalism has unwittingly led to the preservation of this species for the time being.

At the very least, some work is being done not only to understand what these plants need in order to germinate and survive, but also assess the viability of relocated plants that are threatened by human development. Attempts at transplanting individuals in the past have been met with limited success but thankfully the Oncocyclus irises have caught the eye of bulb growers around the world. By sharing information on the needs of these plants in cultivation, growers can help expand on efforts to save species like the Golan iris.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3] [4]

 

The Carnivorous Waterwheel

aldrovanda-caught-tadpole.jpg

Bladderworts (Utricularia spp.) aren't the only carnivorous plants stalking prey below the water surface. Meet the waterwheel (Aldrovanda vesiculosa). At first glance it looks rather unassuming but closer inspection will reveal that this carnivore is well equipped for capturing unsuspecting prey. 

The waterwheel never bothers with roots. Instead, it lives out its life as a free floating sprig, its stem it covered in whorls of filamentous leaves, each tipped with a tiny trap. The trapping mechanism is a bit different from its bladderwort neighbors. Instead of bladders, the waterwheel produces snap traps that closely resemble those of the Venus fly trap (Dionaea muscipula). These traps function in a similar way. When zooplankton or even a small fish trigger the bristles along the rim, the trap snaps shut and begins the digestion process.

aldrovanda-1.gif

This similarity to the Venus fly trap is more than superficial. DNA analysis reveals that they are in fact close cousins. Together with the sundews, these plants make up the family Droseraceae. The evolutionary history of this clade is a bit confusing thanks to a limited fossil record. Today, the waterwheel is the only extant member of the genus Aldrovanda but fossilized seeds and pollen reveal that this group was once a bit more diverse during the Eocene. Whenever these genera diverged, it happened a long time ago and little evidence of it remains.

aldro1.JPG

At one point in time, the waterwheel could be found growing in wetland habitats throughout Africa, Europe, Asia, and even Australia. Today it is considered at risk of extinction. Its numbers have been severely reduced thanks to wetland degradation and destruction. Of the 379 known historical populations, only about 50 remain in tact today and many of these are in rough shape. Agricultural and industrial runoff are exacting a significant toll on its long term survival. To make matters worse, sexual reproduction in the waterwheel is a rare event. Most often this plant reproduces vegetatively, reducing genetic diversity. What's more, natural dispersal into new habitats is extremely limited. 

aldro.JPG

Oddly enough, populations of this plant have popped up in a few locations in eastern North America. These introductions were not a mistake either. Carnivorous plant enthusiasts concerned with the plight of this species in its native habitat began introducing it into water ways in New Jersey, New York, and Virginia where it is now established. Oddly enough, these introductions have performed far better than any of the reintroduction attempts made in its native range in Europe. Of course, this is always cause for concern. Endangered or not, the introduction of a species into new habitat is always risky. Still, there is hope yet for this species. Its popularity among plant growers has led to an increase in numbers in cultivation. At least folks have learned how to cultivate it until more comprehensive and effective conservation measures can be put into place. 

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3] [4] [5]

The Pima Pineapple Cactus

15460136878_1960011563_o.jpg

The Pima pineapple cactus (Coryphantha robustispina) is a federally endangered cactus native to the Sonoran Desert. It is a relatively small cactus by most standards, a fact that can make it hard to find even with a trained eye. Sadly, the plight of this cactus is shared by myriad other plant species of this arid region. Urbanization, fire, grazing, and illegal collection are an ever present threat thanks to our insatiable need to gobble up habitat we should never have occupied in the first place. 

Deserts are lands of extremes and the Pima pineapple cactus seems ready for whatever its habitat can throw its way (naturally). Plants are usually found growing individually but older specimens take on a clustered clonal habit. During the winter months, the Pima pineapple cactus shrivels and waits until warmth returns. Come spring, the Pima pineapple cactus begins anew. On mature specimens, flower buds begin to develop once the plant senses an increase in daylight. 

The flower buds continue to develop well into summer but seem to stop after a certain point. Then, with the onset of the summer monsoons, flower buds quickly mature and open all at once. It is thought that this evolved as a means of synchronizing reproductive events among widely spaced populations. You see, seed set in this species is best achieved via cross pollination. With such low numbers and a lot of empty space in between, these cacti must maximize the chances of cross pollination.

If they were to flower asynchronously, the chances of an insect finding its way to two different individuals is low. By flowering together in unison, the chances of cross pollination are greatly increased. No one is quite sure exactly how these cacti manage to coordinate these mass flowering events but one line of reasoning suggests that the onset of the monsoon has something to do with it. It is possible that as plants start to take up much needed water, this triggers the dormant flower buds to kick into high gear and finish their development. More work is needed to say for sure.

Seed dispersal for this species comes in the form of a species of hare called the antelope jackrabbit. Jackrabbits consume Pima fruits and disperse them across the landscape as they hop around. However, seed dispersal is just one part of the reproductive process. In order to germinate and survive, Pima pineapple cacti seeds need to end up in the right kind of habitat. Research has shown that the highest germination and survival rates occur only when there is enough water around to fuel those early months of growth. As such, years of drought can mean years of no reproduction for the Pima.

Taken together, it is no wonder then why the Pima pineapple cactus is in such bad shape. Populations can take years to recover if they even manage to at all. Sadly, humans have altered their habitat to such a degree that serious action will be needed to bring this species back from the brink of extinction. Aside from the usual suspects like habitat fragmentation and destruction, invasive species are playing a considerable role in the loss of Pima populations. 

Lehmann lovegrass (Eragrostis lehmanniana) was introduced to Arizona in the 1930's and it has since spread to cover huge swaths of land. What is most troubling about this grass is that it has significantly altered the fire regime of these desert ecosystems. Whereas there was once very little fuel for fires to burn through, dense stands of Lehmann lovegrass now offer plenty of stuff to burn. Huge, destructive fires can spread across the landscape and the native desert vegetation simply cannot handle the heat. Countless plants are killed by these burns.

Sometimes, if they are lucky, large cacti can resprout following a severe burn, however, all too often they do not. Entire populations can be killed by a single fire. What few plants remain are frequent targets of poaching. Cacti are quite a hit in the plant trade and sadly people will pay big money for rare specimens. The endangered status of the Pima pineapple cactus makes it a prized target for greedy collectors. 

The future of the Pima pineapple cactus is decidedly uncertain. Thankfully its placement on the endangered species list has afforded it a bit more attention from a conservation standpoint. Still, we know very little about this plant and more data are going to be needed if we are to develop sound conservation measures. This, my friends, is why land conservation is so important. Plants like the Pima pineapple cactus need places to grow. If we do not work harder on setting aside wild spaces, we will lose so much more than this species. 

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3]

Saving Bornean Peatlands is a Must For Conservation

Borneo_rainforest.jpg

The leading cause of extinction on this planet is loss of habitat. As an ecologist, it pains me to see how frequently this gets ignored. Plants, animals, fungi - literally every organism on this planet needs a place to live. Without habitat, we are forced to pack our flora and fauna into tiny collections in zoos and botanical gardens, completely disembodied from the environment that shaped them into what we know and love today. That’s not to say that zoos and botanical gardens don’t play critically important roles in conservation, however, if we are going to stave off total ecological meltdown, we must also be setting aside swaths of land.

There is no way around it. We cannot have our cake and eat it too. Land conservation must be a priority both at the local and the global scale. Wild spaces support life. They buffer it from storms and minimize the impacts of deadly diseases. Healthy habitats filter the water we drink and, for many people around the globe, provide much of the food we eat. Every one of us can think back to our childhood and remember a favorite stretch of stream, meadow, or forest that has since been gobbled up by a housing development. For me it was a forested stream where I learned to love the natural world. I would spend hours playing in the creek, climbing trees, and capturing bugs to show my parents. Since that time, someone leveled the forest, built a house, and planted a lawn. With that patch of forest went all of the insects, birds, and wildflowers it once supported.

Logging_road_East_Kalimantan_2005.jpg
5551935164_127180a252_b.jpg

Scenarios like this play out all too often and sadly on a much larger scale than a backyard. Globally, forests have felt taken the brunt of human development. Though it is hard to get a sense of the scope of deforestation on a global scale, the undisputed leaders in deforestation are Brazil and Indonesia. Though the Amazon gets a lot of press, few may truly grasp the gravity of the situation playing out in Southeast Asia.

Deforestation is a clear and present threat throughout tropical Asia. This region is growing both in its economy and population by about 6% every year and this growth has come at great cost to the environment. Indonesia (alongside Brazil) accounts for 55% of the world’s deforestation rates. This is a gut-wrenching statistic because Indonesia alone is home to the most extensive area of intact rainforest in all of Asia. So far, nearly a quarter of Indonesia’s forests have been cleared. It was estimated that by 2010, 2.3 million hectares of peatland forests had been felled and this number shows little signs of slowing. Experts believe that if these rates continue, this area could lose the remainder of its forests by 2056.

Consider the fact that Southeast Asia contains 6 of the world’s 25 biodiversity hotspots and you can begin to imagine the devastating blow that the levelling of these forests can have. Much of this deforestation is done in the name of agriculture, and of that, palm oil and rubber take the cake. Southeast Asia is responsible for 86% of the world’s palm oil and 87% of the world’s natural rubber. What’s more, the companies responsible for these plantations are ranked among some of the least sustainable in the world.

 Palm oil plantations where there once was rainforest. 

Palm oil plantations where there once was rainforest. 

Borneo is home to a bewildering array of life. Researchers working there are constantly finding and describing new species, many of which are found nowhere else in the world. Of the roughly 15,000 plant species known from Borneo, botanists estimate that nearly 5,000 (~34%) of them are endemic. This includes some of the more charismatic plant species such as the beloved carnivorous pitcher plants in the genus Nepenthes. Of these, 50 species have been found growing in Borneo, many of which are only known from single mountain tops.

It has been said that nowhere else in the world has the diversity of orchid species found in Borneo. To date, roughly 3,000 species have been described but many, many more await discovery. For example, since 2007, 51 new species of orchid have been found. Borneo is also home to the largest flower in the world, Rafflesia arnoldii. It, along with its relatives, are parasites, living their entire lives inside of tropical vines. These amazing plants only ever emerge when it is time to flower and flower they do! Their superficial resemblance to a rotting carcass goes much deeper than looks alone. These flowers emit a fetid odor that is proportional to their size, earning them the name “carrion flowers.”

  Rafflesia arnoldii  in all of its glory.

Rafflesia arnoldii in all of its glory.

Phalaenopsis_bellina_Orchi_01.jpg

If deforestation wasn’t enough of a threat to these botanical treasures, poachers are having considerable impacts on Bornean botany. The illegal wildlife trade throughout southeast Asia gets a lot of media attention and rightfully so. At the same time, however, the illegal trade of ornamental and medicinal plants has gone largely unnoticed. Much of this is fueled by demands in China and Vietnam for plants considered medicinally valuable. At this point in time, we simply don’t know the extent to which poaching is harming plant populations. One survey found 347 different orchid species were being traded illegally across borders, many of which were considered threatened or endangered. Ever-shrinking forested areas only exacerbate the issue of plant poaching. It is the law of diminishing returns time and time again.

Paphiopedilum_philippinense_Orchi_021.jpg

But to lump all Bornean forests under the general label of “rainforest” is a bit misleading. Borneo has multitude of forest types and one of the most globally important of these are the peatland forests. Peatlands are vital areas of carbon storage for this planet because they are the result of a lack of decay. Whereas leaves and twigs quickly breakdown in most rainforest situations, plant debris never quite makes it that far in a peatland. Plant materials that fall into a peatland stick around and build up over hundreds and thousands of years. As such, an extremely thick layer of peat is formed. In some areas, this layer can be as much as 20 meters deep! All the carbon tied up in the undecayed plant matter is carbon that isn’t finding its way back into our atmosphere.

Sadly, tropical peatlands like those found in Borneo are facing a multitude of threats. In Indonesia alone, draining, burning, and farming (especially for palm oil) have led to the destruction of 1 million hectares (20%) of peatland habitat in only one decade. The fires themselves are especially worrisome. For instance, it was estimated that fires set between 1997-1998 and 2002-2003 in order to clear the land for palm oil plantations released 200 million to 1 billion tonnes of carbon into our atmosphere. Considering that 60% of the world’s tropical peatlands are found in the Indo-Malayan region, these numbers are troubling.

Peat_Forest_Swamp_(10712654875).jpg

The peatlands of Borneo are totally unlike peatlands elsewhere in the world. Instead of mosses, gramminoids, and shrubs, these tropical peatlands are covered in forests. Massive dipterocarp trees dominate the landscape, growing on a spongey mat of peat. What’s more, no water flows into these habitats. They are fed entirely by rain. The spongey nature of the peat mat holds onto water well into the dry season, providing clean, filtered water where it otherwise wouldn’t be available.

This lack of decay coupled with their extremely acidic nature and near complete saturation makes peat lands difficult places for survival. Still, life has found a way, and Borneo’s peatlands are home to a staggering diversity of plant life. They are so diverse, in fact, that when I asked Dr. Craig Costion, a plant conservation officer for the Rainforest Trust, for something approaching a plant list for an area of peatland known as Rungan River region, he replied:

“Certainly not nor would there ever be one in the conceivable future given the sheer size of the property and the level of diversity in Borneo. There can be as many as a 100 species per acre of trees in Borneo... Certainly a high percentage of the species would only be able to be assigned to a genus then sit in an herbarium for decades until someone describes them.”

And that is quite remarkable when you think about it. When you consider that the Rungan River property is approximately 385,000 acres, the number of plant species to consider quickly becomes overwhelming. To put that in perspective, there are only about 500 tree species native to the whole of Europe! And that’s just considering the trees. Borneo’s peatlands are home to myriad plant species from liverworts, mosses, and ferns, to countless flowering plants like orchids and others. We simply do not know what kind of diversity places like Borneo hold. One could easily spend a week in a place like the Rungan River and walk away with dozens of plant species completely new to science. Losing a tract of forest in such a biodiverse is a huge blow to global biodiversity.

Headhunter's_trail_Mulu_N._bicalcarata_3.jpg
  Nepenthes ampullaria  relies on decaying plant material within its pitcher for its nutrient needs.

Nepenthes ampullaria relies on decaying plant material within its pitcher for its nutrient needs.

Also, consider that all this plant diversity is supporting even more animal diversity. For instance, the high diversity of fruit trees in this region support a population of over 2,000 Bornean orangutans. That is nearly 4% of the entire global population of these great apes! They aren’t alone either, the forested peatlands of Borneo are home to species such as the critically endangered Bornean white-bearded gibbon, the proboscis monkey, the rare flat-headed cat, and the oddly named otter civet. All these animals and more rely on the habitat provided by these forests. Without forests, these animals are no more.

Pongo_tapanuliensis_female.jpg
 The flat-headed cat, an endemic of Borneo. 

The flat-headed cat, an endemic of Borneo. 

At this point, many of you may be feeling quite depressed. I know how easy it is to feel like there is nothing you can do to help. Well, what if I told you that there is something you can do right now to save a 385,000 acre chunk of peatland rainforest? That’s right, by heading over to the Rainforest Trust’s website (https://www.rainforesttrust.org/project/saving-stronghold-critically-endangered-bornean-orangutan/) you can donate to their campaign to buy up and protect the Rungan River forest tract.

 Click on the logo to learn more!

Click on the logo to learn more!

By donating to the Rainforest Trust, you are doing your part in protecting biodiversity in one of the most biodiverse regions in the world. What’s more, you can rest assured that your money is being used effectively. The Rainforest Trust consistently ranks as one of the top environmental protection charities in the world. Over their nearly three decades of operation, the Rainforest Trust has protected more than 15.7 million acres of land in over 20 countries. Like I said in the beginning, habitat loss is the leading cause of extinction on this planet. Without habitat, we have nothing. Plants are that habitat and by supporting organizations such as the Rainforest Trust, you are doing your part to fight the biggest threats our planet faces. 

Further Reading: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Photo Credits: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

Dipterocarp Forests

32040724474_46958f58d8_b.jpg

Spend any amount of time reading about tropical forests around the world and you are destined to come across mention of dipterocarp forests. If you're anything like me, your initial thought might have been something along the lines of "what the heck does that mean?" Does it describe some sort of structural aspect of the forest, or perhaps a climatic component? To my surprise, dipterocarp forests refer to any forest in which the dominant species of trees are members of the family Dipterocarpaceae. Thus, I was introduced to a group of plants entirely new to me!

The family Dipterocarpaceae is comprised of 16 genera and roughly 700 species. Its members can be found throughout the tropical regions of the world, though they hit their greatest numbers in the forests of southeast Asia and specifically Borneo. As far as habit is concerned, the dipterocarps are largely arborescent, ranging in size from intermediate shrubs to towering emergent canopy trees. If you have watched a documentary on or been to a tropical forest, it is very likely that you have seen at least one species of dipterocarp.

14100164413_52c69bc260_b.jpg

The dipterocarps have a long evolutionary history that stretches back to the early Triassic on the supercontinent of Gondwana. As this massive landmass proceeded to break apart, the early ancestors of this group were carried along with them. Today we can find members of this family in tropical regions of South America, Africa, and Asia. Taxonomically speaking, the family is further divided into three sub families that, to some degree, reflect this distribution.  The subfamily Monotoideae is found in Africa and Colombia, the subfamily Pakaraimoideae is found in Guyana, and the subfamily Dipterocarpoideae is found in Asia.

Biologically, the dipterocarps are quite fascinating. Some species can grow quite large. Three genera - Dryobalanops, Hopea, and Shorea - regularly produce trees of over 80 meters (260 feet) in height. The world record for dipterocarps belongs to an individual of Shorea faguetiana, which stands a whopping 93 meters (305 feet) tall! That's not to say all species are giants. Many dipterocarps live out their entire lives in the forest understory.

Dipterocarpus_retusus_-_Köhler–s_Medizinal-Pflanzen-054.jpg

For species growing in seasonal environments, flowering occurs annually or nearly so. Also, for dipterocarps that experience regular dry seasons, deciduousness is a common trait. For those growing in non-seasonal environments, however, flowering is more irregular and leaves are largely evergreen. Some species will flower once every 3 to 5 years whereas others will flower once every decade or so. In such cases, flowering occurs en masse, with entire swaths of forest bursting into bloom all at once. These mast years often lead to similar aged trees that all established in the same year. Though more work needs to be done on this, it is thought that various bee species comprise the bulk of the dipterocarp pollinator guild. 

Ecologically speaking, one simply cannot overstate the importance of this family. Wherever they occur, dipterocarps often form the backbone of the forest ecosystem. Their number and biomass alone is worth noting, however, these trees also provide fruits, pollen, nectar, and habitat for myriad forms of life. The larger dipterocarps are often considered climax species, meaning that they dominate in regions comprised of mostly primary forest. For the most part, these trees are able to take advantage of more successional habitats, however, this has been shown to be severely limited by the availability of localized seed sources. 

5663117269_7afdcf4948_b.jpg

Since we are on the topic of regeneration, a conversation about dipterocarps would not be complete if we didn't touch on logging. These trees are massive components of tropical economies. Their wood is highly coveted for a a variety of uses I won't go into here. The point is that, on a global scale, dipterocarp forests have taken a huge hit. Many species within this family are now threatened with extinction. Logging, both legal and illegal, specifically aimed at dipterocarps has seen the destruction of millions of acres of old growth dipterocarp forests. With them goes all of the life that they support.

It's not enough to protect individual species. We need to rally behind whole ecosystem protection. Without it, we literally have nothing. Luckily there are groups like the Center For International Forestry Research and the Forest Research Institute of Malaysia that are working hard on research, conservation, and improved forestry standards in an effort to ease up on the detrimental practices currently in place. Still, these efforts are not enough either. Without the care, concern, and most important, the funding from folks like us, little can be done to stop the tide. That is why supporting land conservation agencies is one of the most powerful things we can do for this planet and for each other. 

Some great land conservation organizations worth supporting:

The Rainforest Trust - https://www.rainforesttrust.org/

The Nature Conservancy - http://bit.ly/2B0hFm

The Rainforest Alliance - https://www.rainforest-alliance.org/

Photo Credits: [1] [2] [3] [4]

urther Reading: [1]

A Bat-Pollinated Passion Flower From Ecuador

batpass1.JPG

Say "hello" to one of Passiflora's most recent additions, the bat-pollinated Passiflora unipetala. The first specimens of this vine were discovered back in 2009 by Nathan Muchhala while studying flower visiting bats in northern Ecuador. It is a peculiar member of the genus to say the least. 

One of the most remarkable features of this plant are its flowers. Unlike its multi-petaled cousins, this species stands out in producing a single large petal, which is unique for not only the genus, but the whole family as well. The petal is quite large and resembles a bright yellow roof covering the anthers and stigma. At the base of the flower sits the nectar chamber. The body of the plant consists of a vine that has been observed to grow upwards of 6 meters up into the canopy.

Flowering in this species occurs at night. Their large size, irregular funnel shape, and bright yellow coloring all point to a pollination syndrome with bats. Indeed, pollen of this species has been found on the fur of at least three different bat species. Multiple observations (pictured here) of bats visiting the flowers helped to confirm. Oddly enough for a bat-pollinated plant, the flowers produce no detectable odor whatsoever. However, another aspect of its unique floral morphology is worth noting. 

The surface of the flower has an undulating appearance. Also, the sepals themselves have lots of folds and indentations, including lots of dish-shaped pockets. It is thought that these might help the flower support the weight of visiting bats. They may also have special acoustic properties that help the bats locate the flowers via echolocation. Though this must be tested before we can say for sure, other plants have converged on a similar strategy (read here and here).

As it stands currently, Passiflora unipetala is endemic to only a couple high elevation cloud forests in northern Ecuador. It has only ever been found at two locations and sadly a landslide wiped out the type specimen from which the species description was made. As such, its introduction to the world came complete with a spot on the IUCN Redlist as critically endangered. Luckily, the two localities in which this species has been found are located on privately protected properties. Let's just hope more populations are discovered in the not-too-distant future.

Photo Credits: [1] 

Further Reading: [1]

Botanical Gardens & Plant Conservation

BG1.JPG

Botanical gardens are among my favorite places in the world. I find them both relaxing and stimulating, offering something for all of our senses. Botanical gardens are valuable for more than just their beauty. They serve a deeper purpose than simply showcasing endless poinsettia varieties or yet another collection of Dale Chihuly pieces (a phenomenon I can't quite wrap my head around). Botanical gardens are vitally important centers of ex situ plant conservation efforts.

Ex situ conservation literally means "off site conservation," when plants are grown within the confines of a botanical garden, often far away from their native habitats. This is an important process in and of its own because housing plants in different locations safeguards them from complete annihilation. Simply put, don't put all your endangered eggs in one basket.

IMG_2395.jpg

I don't think botanical gardens get enough credit for their conservation efforts. Sadly, such endeavors are often overshadowed. That's not to say we don't have a good handle on what is going on. In fact, a study published in August of 2017 looked at the status of ex situ plant conservation efforts around the globe.

The paper outlines a conservative estimate of the diversity of plants found in botanical gardens and highlights areas in desperate need of improvement. Utilizing a dataset compiled by Botanic Gardens Conservation International (BGCI), the team found that the world's botanical gardens contain somewhere around 30% or 105,209 of the 350,699 plant species currently known to science. In total, they estimate humanities various living collections contain representatives from roughly 90% of the known plant families. That is pretty impressive considering the scale of plant diversity on our planet.

 Proportions of the world's plants represented in botanical garden collections ( Source )

Proportions of the world's plants represented in botanical garden collections (Source)

Their research didn't stop there either. The team dove deeper into these numbers and found that there are some serious discrepancies in these estimates. For instance (and to my surprise), botanical gardens house more temperate plant species than they do tropical plant species. They estimated that nearly 60% of the world's temperate plant species are being grown in botanical gardens around the world but only 25% of tropical species. This is despite the fact that most of the world's plants are, in fact, tropical.

Similarly, only 5% of botanical garden collections are dedicated to non-vascular plants like mosses and liverworts. This is a shame not only because these plants are quite interesting and beautiful, but they also are descendants of the first plant lineages to make their way onto land. They are vital to understanding plant evolution as well as plant diversity.

As I mentioned above, ex situ conservation efforts are critical in fighting plant extinctions across the globe. With 1/5 of the world's plants at risk of extinction, the authors of the paper were particularly interested in how botanical gardens were doing in this regard. They found that although various institutions are growing nearly half of all the known threatened plant species on this planet, only 10% of their collection space is devoted to these species. It goes without saying that this number needs to improve if we are to stave off further extinctions.

Taken together, this study paints an interesting and informative picture of botanical garden collections on a global scale. They are doing amazing work to protect and showcase plant diversity. However, there is always a need for improvement. More space and effort needs to be made in ex situ plant conservation efforts. More plants, especially little known tropical species, need to be brought into cultivation. More space must be devoted to propagating threatened and endangered species. Finally, more attention must be given to natural plant diversity rather than gaudy cultivars. If you love botanical gardens as much as I do, please support them. As the authors so eloquently summarize, "Without deep sustained public support, the plant conservation movement will struggle."

Further Reading: [1]

 

 

An Orchid of Hybrid Origin

Hybridization is an often overlooked mechanism for evolution. We are taught in high school that hybrids such as mules and ligers are one-off's, evolutionary dead ends doomed to a life of sterility. Certainly this holds true in many instances. Species separated by great lengths of time and space are simply incompatible. However, there are instances throughout the various kingdoms of life in which hybrids do turn out viable.

If they are different enough from either parent, their creation may lead to speciation down the line. Such events have been found in ferns, butterflies, and even birds. One particular example of a hybrid species only recently came to my attention. While touring the Atlanta Botanical Garden I came across a fenced off bed of plants. Inside the fence were orchids standing about knee height. At the top of each plant was a brilliant spike of orange flowers. "Ah," I exclaimed, "the orange fringed orchid!" The reply I got was unexpected - "Sort of."

What I had stumbled across was neither the orange fringed orchid (Platanthera ciliaris) nor the crested yellow orchid (Platanthera cristata). What I was looking at were a small handful of the globally imperiled Chapman's fringed orchid (Platanthera chapmanii). Though there is some debate about the origins of this species, many believe it to be a naturally occurring hybrid of the other two. In many ways it is a perfect intermediate. Despite its possible hybrid origins, it nonetheless produces viable seed. What's more, it readily hybridizes with both parental species as well as a handful of other Platanthera with which it sometimes shares habitat.

Despite occasionally being found along wet roadside ditches, this species is rapidly losing ground. The wet meadows and pine savannas it prefers are all too quickly being leveled for housing and other forms of development. Although it once ranged from southeast Texas to northern Florida, and southeast Georgia, it has since been reduced to less than 1000 individuals scattered among these three states.

There is a light at the end of the tunnel though. Many efforts are being put forth to protect and conserve this lovely orchid. Greenhouse propagation in places like the Atlanta Botanical Garden are helping supplement wild populations while at the same time, maintaining genetic diversity. New populations have been located in Georgia and are now under protection. Though not out of the woods yet, this species serves as a reminder that a little bit of effort can go a long way.

Further Reading: [1] [2] [3] [4]

1,730 New Plant Species Were Described in 2016

  Manihot debilis

Manihot debilis

The discovery of a new animal species is celebrated the world over. At the same time, plants are lucky to ever make headlines. This is a shame considering that plants form the backbone of all terrestrial ecosystems. The conversation is starting to change, however, as more and more people are waking up to the fact that plants are fascinating organisms in their own right. In a recent addition of Kew Garden's State of the World's Plants, they report on 1,730 newly described plant species from all over the world.

Begonia rubrobracteolata

The discovery of these new plants species is truly a global event. Central and South America, Africa, tropical Asia, and Madagascar saw the addition of many intriguing taxonomic novelties. For instance, Malaysia can now add 29 new species of Begonia to their flora. Africa can now boast to be the home of the largest species of Bougainvillea in the world. Standing at 3 meters in height, it is an impressive sight to behold. Madagascar was particularly fruitful (pun intended), adding 150 new species, subspecies, and varieties of Croton all thanks to the diligent work of the late Alan Radcliffe-Smith. 

  Commicarpus macrothamnum  Photo Credit: Ib Friis

Commicarpus macrothamnum Photo Credit: Ib Friis

One of the most exciting finds from Madagascar was a new genus of climbing bamboos named Sokinochloa. So far only 7 species have been named. The key to unlocking the diversity of this new genus lies in their flowers, which are not produced on a regular basis. Like many bamboos, the Sokinochloa produce flowers at intervals of 10 to 50+ years. The new discoveries did not consist entirely of small understory herbs either. Some of those 1,730 plants were massive forest trees.

  Sokinochloa australis

Sokinochloa australis

One of these new tree species is Africa's first endemic species of Calophyllum (Calophyllaceae). They were discovered during a survey for a uranium mine and, with fewer than 10 mature individuals, are considered critically endangered. Expeditions in Central America and the Andes turned up 27 new tree species in the genus Sloanea (Elaeocarpaceae) as well as 10 new species Trichilia, a genus of trees belonging to the mahogany family (Meliaceae).

The list could go on and on. Even more exiting is the fact that 2016 wasn't a particularly exceptional year for new plant discoveries. An estimated 2,000 new plant species are discovered on an annual basis. We aren't even close to grasping the full extent of plant diversity on this planet. What plants desperately need, however, is more attention. More attention leads to more scrutiny, more scrutiny leads to better understanding, and better understanding leads to improved conservation efforts. We could be doing a lot better with conservation efforts if we considered the plants whose very existence is essential for all life as we know it.

  Barleria mirabilis  Photo Credit :  Quentin Luke

Barleria mirabilis Photo Credit: Quentin Luke

  Tibouchina rosanae  Photo Credit: W Milliken

Tibouchina rosanae Photo Credit: W Milliken

  Englerophytum paludosum  Photo Credit: Xander van der Burgt

Englerophytum paludosum Photo Credit: Xander van der Burgt

You can download your own copy of the State of the World's Plants by clicking here

All photos thanks to the Royal Botanical Gardens at Kew unless otherwise noted.

Meet Snorkelwort

If vernal pools are considered ephemeral then granite pools are downright fleeting. Any organism that specializes in such a habitat must be ready to deal with extremes. That is what makes a little plant known scientifically as Gratiola amphiantha so darn cool. It's what also makes it so darn threatened. 

This tiny member of the Plantaginaceae family is native to the Piedmont province of southeastern North America. It lives out its entire life in shallow pools that form in weathered granitic outcrops. One must really think about the specificity of this sort of habitat to truly appreciate what this little aquatic herb is up against. Pools must be deep enough to hold water just long enough but not too deep to allow normal plant succession. They must have just enough soil to allow these plants to take root but the soil must be thin enough to prevent other vegetation from taking over. They must also be low in nutrients to limit the growth of algae that would otherwise cloud the water. Needless to say, this makes suitable habitat for snorkelwort hard to come by. 

When such conditions are met, however, snorkelwort can be quite prolific. Seeds of this species germinate in late fall and early winter when only a thing veneer of water covers the equally thin soils. Individual plants form a small rosette that sits in wait until rains fill the tiny pools. Once submerged, the rosettes send up thin stem-like structures called scapes. These scapes terminate in two tiny bracts that float at the waters surface. Between the two bracts emerges tiny, white, five petaled flowers. Submerged flowers are also produced but these are cleistogamous flowers that never open and only self-pollinate. This ensures that at least some seeds are produced every growing season. 

When you consider all aspects of its ecology, it is no wonder that snorkelwort is teetering on the edge of extinction. The granitic pools in which it lives are very sensitive to change. It doesn't take much to make them totally unsuitable places to live. Protecting them alone is hard enough. Mining, pollution, littering, and even casual hikers can wipe out entire populations in an instant. Even populations living within the boarders of protected parks have been extirpated by hiking and littering. When you live on the edge, it doesn't take much to fall off. In total, only about 31 populations scattered through Alabama, Georgia, and South Carolina are all that remains of this overlooked little plant. 

The upside to all of this is that numerous stake holders, both public and private, are invested in the ongoing success of this species. Private land owners whose land supports snorkelwort populations are cooperating with botanists to ensure that this species continues to find what it needs to survive. Luckily a sizable chunk of the remaining populations are large enough to support ample genetic diversity and, at this point in time, don't seem to be at any risk of destruction. For a little plant like snorkelwort, a little attention can go a long way. If you know a spot where this interesting little plant grows, tread lightly and appreciate it from a safe distance. 

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3]

 

Important Lessons From Ascension Island

Located in the middle of the South Atlantic, Ascension Island is probably not on the top of anyone's travel list. This bleak volcanic island doesn't have much to offer the casual tourist but what it lacks in amenities it makes up for in a rich and bizarre history. Situated about 2,200 km east of Brazil and 3,200 km west of Angola, this remote island is home to one of the most remarkable ecological experiments that is rarely talked about. The roots of this experiment stem back to a peculiar time in history and the results have so much to teach the human species about botany, climate, extinction, speciation, and much more. What follows is not a complete story; far from it actually. However, my hope is that you can take away some lessons from this and, at the very least, use it as a jumping off point for future discussions. 

Ascension Island is, as land masses go, quite young. It arose from the ocean floor a mere 1 million years ago and is the result of intense volcanic activity. Estimates suggest that volcanism was still shaping this island as little as 1000 years ago. Its volcanic birth, young age, isolated conditions, and nearly non-existent soils meant that for most of its existence, Ascension Island was a depauperate place. It was essentially a desert island. Early sailors saw it as little more than a stopover point to gather turtles and birds to eat as they sailed on to other regions. It wasn't until 1815 that any permanent settlements were erected on Ascension. 

In looking for an inescapable place to imprison Napoleon Bonaparte, the Royal Navy claimed Ascension in the name of King George III. Because Napoleon had a penchant for being an escape artist, the British decided to build a garrison on the island in order to make sure Napoleon would not be rescued. In doing so, the limitations of the island quickly became apparent. There were scant soils in which to grow vegetables and fresh water was nearly nonexistent. 

The native flora of Ascension was minimal. It is estimated that, until the island was settled, only about 25 to 30 plant species grew on the island. Of those 10 (2 grasses, 2 shrubs, and 6 ferns) were considered endemic. If the garrison was to persist, something had to be done. Thus, the Green Mountain garden was established. British marines planted this garden at an elevation of roughly 2000 feet. Here the thin soils supported a handful of different fruits and vegetables. In 1836, Ascension was visited by a man named Charles Darwin. Darwin took note of the farm that had developed and, although he admired the work that was done in making Ascension "livable" he also noted that the island was "destitute of trees."

 One of Ascension Island's endemic ferns -  Pteris adscensionis

One of Ascension Island's endemic ferns - Pteris adscensionis

Others shared Darwin's sentiment. The prevailing view of this time period was that any land owned by the British empire must be transformed to support people. Thus, the wheels of 'progress' turned ever forward. Not long after Darwin's visit, a botanist by the name of Joseph Hooker paid a visit to Ascension. Hooker, who was a fan of Darwin's work, shared his sentiments on the paucity of vegetation on the island. Hooker was able to convince the British navy that vegetating the island would capture rain and improve the soil. With the support of Kew Gardens, this is exactly what happened. Thus began the terraforming of Green Mountain.

For about a decade, Kew shipped something to the tune of 330 different species of plants to be planted on Ascension Island. The plants were specifically chosen to withstand the harsh conditions of life on this volcanic desert in the middle of the South Atlantic. It is estimated that 5,000 trees were planted on the island between 1860 and 1870. Most of these species came from places like Argentina and South Africa. Soon, more plants and seeds from botanical gardens in London and Cape Town were added to the mix. The most incredible terraforming experiment in the world was underway on this tiny volcanic rock. 

By the late 1870's it was clear the the experiment was working. Trees like Norfolk pines (Araucaria heterophylla), Eucalyptus spp. and figs (Ficus spp.), as well as different species of banana and bamboo had established themselves along the slopes of Green Mountain. Where there was once little more than a few species of grass, there was now the start of a lush cloud forest. The vegetation community wasn't the only thing that started to change on Ascension. Along with it changed the climate. 

Estimates of rainfall prior to these terraforming efforts are sparse at best. What we have to go on are anecdotes and notes written down by early sailors and visitors. These reports, however, paint a picture of astounding change. Before terraforming began, it was said that few if any clouds ever passed overhead and rain rarely fell. Those living on the island during the decade or so of planting attested to the fact that as vegetation began to establish, the climate of the island began to change. One of the greatest changes was the rain. Settlers on the island noticed that rain storms were becoming more frequent. Also, as one captain noted "seldom more than a day passes over now without a shower or mist on the mountain." The development of forests on Ascension were causing a shift in the island's water cycle. 

Plants are essentially living straws. Water taken up by the roots travels through their tissues eventually evaporating from their leaves. The increase in plant life on the island was putting more moisture into the air. The humid microclimate of the forest understory cooled the surrounding landscape. Water that would once have evaporated was now lingering. Pools were beginning to form as developed soils retained additional moisture.

Now, if you are anything like me, at this point you must be thinking to yourself "but what about the native flora?!" You have every right to be concerned. I don't want to paint the picture that everything was fine and dandy on Ascension Island. It wasn't. Even before the terraforming experiment began, humans and other trespassers left their mark on the local biota. With humans inevitably comes animals like goats, donkeys, pigs, and rats. These voracious mammals went to work on the local vegetation. The early ecology that was starting to develop on Ascension was rocked by these animals. Things were only made worse when the planting began.

Of the 10 endemic plants native to Ascension Island, 3 went extinct, having been pushed out by all of the now invasive plant species brought to the island. Another endemic, the Ascension Island parsley fern (Anogramma ascensionis) was thought to be extinct until four plants were discovered in 2010. The native flora of Ascension island was, for the most part, marginalized by the introduction of so many invasive species. This fact was not lost of Joseph Hooker. He eventually came to regret his ignorance to the impacts terraforming would have on the native vegetation stating “The consequences to the native vegetation of the peak will, I fear, be fatal, and especially to the rich carpet of ferns that clothed the top of the mountain when I visited it." Still, some plants have adapted to life among their new neighbors. Many of the ferns that once grew terrestrially, can now be found growing epiphytically among the introduced trees on Green Mountain. 

 The Ascension Island parsley fern ( Anogramma ascensionis )

The Ascension Island parsley fern (Anogramma ascensionis)

Today Ascension Island exists as a quandary for conservation ecologists. On the one hand the effort to protect and conserve the native flora and fauna of the island is of top priority. On the other hand, the existence of possibly the greatest terraforming effort in the world begs for ecological research and understanding. A balance must be sought if both goals are to be met. Much effort is being put forth to control invasive vegetation that is getting out of hand. For instance, the relatively recent introduction of a type of mesquite called the Mexican thorn (Prosopis juliflora) threatens the breeding habitat of the green sea turtle. Efforts to remove this aggressive species are now underway. Although it is far too late to reverse what has been done to Ascension Island, it nonetheless offers us something else that may be more important in the long run: perspective.

If anything, Ascension Island stands as a perfect example of the role plants play in regulating climate. The introduction of these 330+ plant species to Ascension Island and the subsequent development of a forest was enough to completely change the weather of that region. Where there was once a volcanic desert there is a now a cloud forest. With that forest came clouds and rain. If adding plants to an island can change the climate this much, imagine what the loss of plants from habitats around the world is doing. 

Each year an estimated 18 million acres of forest are lost from this planet. As human populations continue to rise, that number is only going to get bigger. It is woefully ignorant to assume that habitat destruction isn't having an influence on global climate. It is. Plants are habitat and when they go, so does pretty much everything else we hold near and dear (not to mention require for survival). If the story of Ascension does anything, I hope it serves as a reminder of the important role plants play in the function of the ecosystems of our planet. 

 The endemic Ascension spurge ( Euphorbia origanoides )

The endemic Ascension spurge (Euphorbia origanoides)

Photo Credits: [1] [2] [3] [4] [5] [6] [7] [8]

Further Reading: [1] [2] [3]

 

Ancient Green Blobs

Curious images of these strange green mounds make the rounds of social media every so often. What kind of alien life form is this? Is it a moss? Is it a fungus? The answer may surprise you!

In reality, this large mound is comprised of a colony of plants in the carrot family! Known scientifically as Azorella compacta, this species hails from the Andes and only grows between 3,200 and 4,500 metres in elevation. Its tightly compacted growth-form is an adaptation to this lifestyle, serving to prevent heat loss in such a cold and windy environment. Every so often, these mats erupt with tiny flowers, which must be a sight to behold!

The colonies expand at the rate of roughly 1.5 cm each year. Large colonies are estimated at over 3000 years old, making them some of the oldest living organisms on the planet! Sadly, the dense growth of the plant makes it highly sought after as a fuel source. Locals harvest the plant with pick axes and burn the dense mats for heat, not unlike peat from bogs. 

Because of its slow growth rate, harvesting this species has caused a serious decline in numbers. Local governments have since enacted laws to protect this species and some recovery has been documented though, with such slow growth rates, only time will tell if protection is enough. 

Photo Credits: [1] [2] 

Further Reading: [1]