A New Species of Waterfall Specialist Has Been Discovered In Africa

Lebbiea grandiflora Oct2018.JPG

At first glance, this odd plant doesn’t look very special. However, it is the first new member of the family Podostemaceae to be found in Africa in over 30 years. It has been given the name Lebbiea grandiflora and it was discovered during a survey to assess the impacts of a proposed hydroelectric dam. By examining the specimen, Kew botanists quickly realized this plant was unique. Sadly, if all goes according to plan, this species may not be long for this world unless something is done to preserve it.

Members of the family Podostemaceae are strange plants. Despite how delicate they look, these plants specialize in growing submersed on rocks in waterfalls, rapids, and other fast flowing bodies of water. They are generally small plants, though some species can grow to lengths of 3 ft. (1 m) or more. The best generalization one can make about this group is that they like clean, fast-flowing water with plenty of available rock surfaces to grow on.

Lebbiea grandiflora certainly fits this description. It is native to a small portion of Sierra Leone and Guinea where it grows on slick rock surfaces only during the wet season. As the dry season approaches and the rivers shrink in size, L. grandiflora quickly sets seed and dies.

As mentioned, the area in which this plant was discovered is slated for the construction of a large hydroelectric dam. The building of this dam will most certainly destroy the entire population of this plant. As soon as water slows, becomes more turbid, and sediments build up, most Podostemaceae simply disappear. Unfortunately, I appears this plant was in trouble even before the dam came into the picture.

 A. habit, whole plant, in fruit, showing the flat root, a pillar-like ‘haptera’, and a shoot with three inflorescences, B. detail of shoot with three branches, C. view of upper surface of a flattened root, with six short, erect shoots, each with 1–2 1-flowered inflorescences emerging from spathellum remains, D. side view of plant showing, on the lower surface of the flattened root, the pillar-like haptera, branched at base; upper surface of root with spathellum-sheathed inflorescence base, E. plant attached to rock by weft of thread-like root hairs (indicated with arrow) from base of pillar-like haptera; upper surface of flattened root with two shoots, F. side view of flower showing one of two tepals in full frontal view, G. as F. with tepal removed, exposing the gynoecium with, to left, the arched-over androecium, H. side view of flower with androecium in centre, two tepals flanking the gynoecium, I. androecium (leftmost of three anthers missing), J. transverse section of andropodium, K. view of gynoecium from above showing funneliform style-stigma base, L. fruit, dehisced, M. transverse section of bilocular fruit, showing septum and placentae, N. placentae with seeds, divided by septum, O. seeds, P. seed with mucilage outer layer. Drawn by Andrew Brown from  Lebbie  A2721  [SOURCE]

A. habit, whole plant, in fruit, showing the flat root, a pillar-like ‘haptera’, and a shoot with three inflorescences, B. detail of shoot with three branches, C. view of upper surface of a flattened root, with six short, erect shoots, each with 1–2 1-flowered inflorescences emerging from spathellum remains, D. side view of plant showing, on the lower surface of the flattened root, the pillar-like haptera, branched at base; upper surface of root with spathellum-sheathed inflorescence base, E. plant attached to rock by weft of thread-like root hairs (indicated with arrow) from base of pillar-like haptera; upper surface of flattened root with two shoots, F. side view of flower showing one of two tepals in full frontal view, G. as F. with tepal removed, exposing the gynoecium with, to left, the arched-over androecium, H. side view of flower with androecium in centre, two tepals flanking the gynoecium, I. androecium (leftmost of three anthers missing), J. transverse section of andropodium, K. view of gynoecium from above showing funneliform style-stigma base, L. fruit, dehisced, M. transverse section of bilocular fruit, showing septum and placentae, N. placentae with seeds, divided by septum, O. seeds, P. seed with mucilage outer layer. Drawn by Andrew Brown from Lebbie A2721 [SOURCE]

As mentioned, Podostemaceae need clean rock surfaces on which to germinate and grow. Without them, the seedlings simply can’t get established. Mining operations further upstream of the Sewa Rapids have been dumping mass quantities of sediment into the river for years. All of this sediment eventually makes it down into L. grandiflora territory and chokes out available germination sites.

Alarmed at the likely extinction of this new species, the Kew team wanted to try and find other populations of L. grandiflora. Amazingly, one other population was found growing in a river near Koukoutamba, Guinea. Sadly, the discovery of this additional population is bitter sweet as the World Bank is apparently backing another hydro-electric dam project on that river as well.

The only hope for the continuation of this species currently will be to (hopefully) find more populations and collect seed to establish ex situ populations both in other rivers as well as in captivity if possible. To date, no successful purposeful seeding of any Podostemaceae has been reported (if you know of any, please speak up!). Currently L. grandiflora has been given “Critically Endangered” status by the IUCN and the botanists responsible for its discovery hope that, coupled with the publication of this new species description, more can be done to protect this small rheophytic herb.

Photo Credit: [1] [2]

Further Reading: [1]

Hydrostachyaceae: Enigmatic Rheophytes

124820-5.jpg

Today I would like to introduce you to an enigmatic family of aquatic angiosperms called Hydrostachyaceae. Though they kind of look like strange aquatic ferns or perhaps even lycopods, they are actually strange flowering plants. To find them, you need to hang out around waterfalls and rapids in either Madagascar or southern Africa.

Hydrostachyaceae is made up of roughly 22 species. This is a poorly understood group of plants and there is always a chance that more species await discovery. The various members of Hydrostachyaceae all take on a similar appearance. For much of the year they exist as a set of feathery, fern-like leaves that grow surprisingly large and look quite delicate, especially considering the types of habitats in which they grow.

124820-2.jpg

Their delicate appearance is deceptive. In fact, the feathery structure of their leaves is an adaptation to the waters in which they grow. These are plants that require fast moving, clean, fresh water. If they were to produce flat, unbroken leaves, the fast currents would quickly rip them to shreds. By producing long, feathery leaves, water simply flows right over them with minimal disturbance. However, their preferred habitats also make them extremely difficult to study. Hence we know very little about their ecology.

What we do know about these plants is that they need clean rock surfaces and clear water for germination and subsequent growth. Dump too much sediment in the stream and you can kiss these plants goodbye. When they dry season approaches and water levels begin to drop, these oddball plants go into flowering mode. To the best of my knowledge, nearly all members of this family are dioecious, meaning individual plants are either male or female. When it comes time to flower, each plant produces modest sized spikes densely packed with flower.

hydrostachys-polymorpha_-alexander-rebelo.jpg

The spikes themselves sit up and above the water line, which is how this family and genus got its name. Hydrostachys is Greek and roughly translates to “water spike.” I have not been able to track down any solid information on what might be pollinating these blooms, however, given their small, dense nature, and the extreme places in which they live, my bet would be on wind.

The ecology of Hydrostachyaceae isn’t the only mystery about these plants. Their position on the tree of life has also been cause for confusion ever since they were discovered. Morphologically speaking, aquatic angiosperms can offer a lot of confusion to taxonomists. Like whales, the ancestors of aquatic angiosperms lived out their lives on land. Making the move back into water comes with a lot of extremely specialized adaptations that can cloud our morphological interpretations of things.

hydroimbrherb1.jpg

Some authors have put forth the idea that these plants belong to another family of highly derived aquatic angiosperms - the Podostemaceae. However, genetic analyses paint a much different story. When the Angiosperm Phylogeny Group got a hold of specimens, their molecular work suggested the Hydrostachyaceae were nestled in Cornales, somewhere near the Hydrangea family (Hydrangeaceae). Exactly where Hydrostachyaceae fits into this new classification is still up for debate but it just goes to show you how messy things can get when plant lineages return to water.

Sadly, like so many other plants, the various members of Hydrostachyaceae are under a lot of pressure in the wild. Basically anything that threatens the quality of streams and rivers is a threat to the ongoing survival of these species. Runoff pouring into water ways from agriculture and mining cloud up the water and bury available germination sites under layers of sediment. Things only get worse when hydroelectric projects are installed. The fate of these plants is unequivocally tied to water quality.

124820-1.jpg

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4]

Meet the Crypts

26165576_2033477836679071_8698732942376159621_n.jpg

If you have ever spent time in an aquarium store, you have undoubtedly come across a Cryptocoryne or two. Indeed, these plants are most famous for their indispensable role in aquascaping freshwater aquaria. As organisms, however, crypts receive considerably less attention. Nonetheless, a handful of dedicated botanists have devoted time and effort to understanding this wonderful genus of tropical Aroids. What follows is a brief introduction to the world of Cryptocoryne plants. 

Cryptocoryne is a genus that currently consists of around 60 - 65 species, all of which are native to tropical regions of Asia and New Guinea. Every few years it seems at least one or two new species are added to this list and without a doubt, more species await discovery. All crypts are considered aquatic to one degree or another. Ecologically speaking, however, species fall into four broad categories based on the types of habitats they prefer.

  Cryptocoryne cognata in situ .

Cryptocoryne cognata in situ.

The most familiar crypts grow along the banks of slow-moving rivers and streams and find themselves submerged for a large portion of their life. Others grow in seasonally flooded habitats and experience a pronounced dry season. These species usually go dormant until flood waters return. Still others can be found growing in swampy forested habitats, often in acidic peat swamps. Finally, a few crypts have adapted to living in tidal zones in both fresh and brackish waters.

Like all aquatic plants, crypts face a lot of challenges living in water. One of the biggest challenges is reproduction. Despite their aquatic nature, crypts will not flower successfully underwater. If growing submerged, most crypt species reproduce vegetatively via a creeping rhizome. As such, crypts often form large, clonal colonies in both the wild and in aquaria, a fact that has made a few crypts aggressive invaders in places like Florida.

  Cryptocoryne wendtii  is one of the most common species in the aquarium trade. Its textured leaves are thought to have a higher surface area, allowing this plant to thrive in shaded aquatic habitats.

Cryptocoryne wendtii is one of the most common species in the aquarium trade. Its textured leaves are thought to have a higher surface area, allowing this plant to thrive in shaded aquatic habitats.

Given proper hydrologic cycles, however, crypts will flower and when they do, it is truly a sight to behold. As is typical of aroids, crypts produce an inflorescence comprised of a spadix with whirls of male and female flowers covered by a decorative sheath called a spathe. This spathe is the key to successful flowering among the various crypt species.

 Species like  C. becketti  have become invasive in places like Florida, no doubt thanks to aquarium hobbyists.

Species like C. becketti have become invasive in places like Florida, no doubt thanks to aquarium hobbyists.

If the spathe were to open underwater, the inflorescence would quickly rot. Instead, most crypts seem to have an uncanny ability to sense water levels. At early stages of development, the spathe completely encloses the developing spadix in a water tight package. The tubular spathe continues to grow upward until the top has breached the surface. Consequently, the overall length of a crypt inflorescence is highly variable depending on the water level of its habitat. Crypts living in tidal zones take this a step further. Somehow they are able to time their flowering events to the ebb and flow of the tides, only producing flowers during periods of the month when tides are at their lowest.

  Cryptocoryne ligua

Cryptocoryne ligua

With the tip of the inflorescence safely above water, the spathe will finally open revealing their surprisingly complex anatomy and coloration. It is a shame that most crypt growers never get to see such floral splendor in person. The spathe of many crypt species emit a faint but unpleasant odor. Additionally, some species adorn the spathe with fringes that, coupled with stark coloration, is thought to improve the chances of pollinator visitation.

Pollinators are poorly studied among crypts, however, it is thought that small flies take up the bulk of the work. Lured in by the promise of a rotting meal on which they can feed and lay their eggs, the flies become trapped inside the long tube of the spathe. Like the pitfall traps of a pitcher plant, the inner walls of the spathe are coated in a waxy substance that keeps the insects from crawling out before they do their job.

In general, the female flowers mature first. If the insect inside has visited a crypt of the same species the day before, it is likely carrying pollen and thus deposits said pollen onto the stigmas of the current crypt. After the female flowers have had a chance at being fertilized, the male flowers then mature. The insects inside are then dusted with new pollen, the walls of the spathe lose their slippery properties, and the insects are released in hopes of repeated the process again.

 The fruit of a  Cryptocoryne  is called a syncarp.

The fruit of a Cryptocoryne is called a syncarp.

To the best of my knowledge, most crypts are not self-compatible. Instead, plants must receive pollen from unrelated individuals to set seed. Because large crypt colonies are often made up of clones of a single mother plant, sexual reproduction can be rather infrequent among the various species. Nonetheless sexual reproduction does occur and the seeds are produced in a different way than most other aroids. Instead of berries, crypts produce their seeds in a aggregated collection of fruits called a syncarp. When ripe, the syncarp opens like a little star and the seeds float away on the current.

One species, Cryptocoryne ciliata, takes seed production to a whole different level by producing viviparous seeds. Before the syncarp even opens, the seeds actually germinate on the mother plant. In this way, tiny seedlings complete with roots and leaves are released instead of seeds. Seedlings have a much greater surface area than seeds and readily get stuck in mud as well as other aquatic vegetation. In this way, C. ciliata offspring get a jump start on the establishment process. It is no wonder then that C. ciliata has one of the widest distributions of any of the crypt species.

  Cryptocoryne ciliata

Cryptocoryne ciliata

Despite plenty of overlap among the ranges of various crypt species, the genus displays an amazing array of variation. Some have likened crypts to Araceae's version of Darwin's finches in that the unique ecology of each species appears to have created barriers to species introgression. Though hybrids do occur, each crypt seems to maintain its own niche via a unique habitat requirement, differing flower phenology, or a specific set of pollinators. It would appear that much can be learned about the mechanics of speciation by studying the various Cryptocoryne and their habits.

Unfortunately, the limited geographic distribution and specific habitat requirements of crypt species is cause for concern. Many are growing more and more rare as human settlements expand and destroy valuable crypt habitat. As popular as some crypts may be in cultivation, many others have proven too idiosyncratic to grow on a commercial level. More work is certainly needed to properly assess populations and bring plants into cultivation as a form of ex situ conservation.

  Cryptocoryne cordata  Var. Siamensis 'Rosanervig' is a contoversial variety names recognized by the stark patterns of venation on its leaves.

Cryptocoryne cordata Var. Siamensis 'Rosanervig' is a contoversial variety names recognized by the stark patterns of venation on its leaves.

Proper study is further complicated by the fact that many crypt species are highly plastic. They have to be in order to survive the rigors of their aquatic environment. True species identification can really only be assessed when flowers are present and some populations seem to prefer vegetative over sexual reproduction a majority of the time. A multitude of subspecies exist, though the degree to which they should be formally recognized is up for debate.

I think it is safe to say that Cryptocoryne is a genus worth far more attention than it currently receives. They are without a doubt important components of the ecology of their native habitats and humans would do well to understand them a bit better. With a bit more attention from botanical gardens and other conservation organizations, perhaps the future for many crypts does not have to be so bleak.

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4] [5]

 

The Carnivorous Waterwheel

aldrovanda-caught-tadpole.jpg

Bladderworts (Utricularia spp.) aren't the only carnivorous plants stalking prey below the water surface. Meet the waterwheel (Aldrovanda vesiculosa). At first glance it looks rather unassuming but closer inspection will reveal that this carnivore is well equipped for capturing unsuspecting prey. 

The waterwheel never bothers with roots. Instead, it lives out its life as a free floating sprig, its stem it covered in whorls of filamentous leaves, each tipped with a tiny trap. The trapping mechanism is a bit different from its bladderwort neighbors. Instead of bladders, the waterwheel produces snap traps that closely resemble those of the Venus fly trap (Dionaea muscipula). These traps function in a similar way. When zooplankton or even a small fish trigger the bristles along the rim, the trap snaps shut and begins the digestion process.

aldrovanda-1.gif

This similarity to the Venus fly trap is more than superficial. DNA analysis reveals that they are in fact close cousins. Together with the sundews, these plants make up the family Droseraceae. The evolutionary history of this clade is a bit confusing thanks to a limited fossil record. Today, the waterwheel is the only extant member of the genus Aldrovanda but fossilized seeds and pollen reveal that this group was once a bit more diverse during the Eocene. Whenever these genera diverged, it happened a long time ago and little evidence of it remains.

aldro1.JPG

At one point in time, the waterwheel could be found growing in wetland habitats throughout Africa, Europe, Asia, and even Australia. Today it is considered at risk of extinction. Its numbers have been severely reduced thanks to wetland degradation and destruction. Of the 379 known historical populations, only about 50 remain in tact today and many of these are in rough shape. Agricultural and industrial runoff are exacting a significant toll on its long term survival. To make matters worse, sexual reproduction in the waterwheel is a rare event. Most often this plant reproduces vegetatively, reducing genetic diversity. What's more, natural dispersal into new habitats is extremely limited. 

aldro.JPG

Oddly enough, populations of this plant have popped up in a few locations in eastern North America. These introductions were not a mistake either. Carnivorous plant enthusiasts concerned with the plight of this species in its native habitat began introducing it into water ways in New Jersey, New York, and Virginia where it is now established. Oddly enough, these introductions have performed far better than any of the reintroduction attempts made in its native range in Europe. Of course, this is always cause for concern. Endangered or not, the introduction of a species into new habitat is always risky. Still, there is hope yet for this species. Its popularity among plant growers has led to an increase in numbers in cultivation. At least folks have learned how to cultivate it until more comprehensive and effective conservation measures can be put into place. 

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3] [4] [5]

Ferns Afloat

Salvinia_natans_(habitus)_2.jpg

My introduction to the genus Salvinia was as an oddball aquarium plant floating in a display tank at the local pet store. I knew nothing about plants at the time but I found it to be rather charming nonetheless. Every time the green raft of leaves floated under the filter outlet, water droplets would bead off them like water off of a ducks back. Even more attractive were the upside down forest of "roots" which were actively sheltering a bunch of baby guppies. 

I grew some Salvinia for a few years before my interest in maintaining aquariums faded. I had forgotten about them for quite some time. Much later as I was diving into the wild world of botany, I started revisiting some of the plants that I had grown in various aquariums to learn more about them. It wasn't long before the memory of Salvinia returned. A quick search revealed something quite astonishing. Salvinia are not flowering plants. They are ferns! 

The genus Salvinia is quite wide spread. They can be found growing naturally throughout North, Central, and South America, the West Indies, Europe, Africa, and Madagascar. Sadly, because of their popularity as aquarium and pond plants, a few species have become extremely aggressive invaders in many water ways. More on that in a bit. 

Salvinia is comprised of roughly 12 different species. Of these, at least 4 are suspected to be naturally occurring hybrids. As you have probably already gathered, these ferns live out their entire lives as floating aquatic plants. Their most obvious feature are the pairs of fuzzy green leaves borne on tiny branching stems. These leaves are covered in trichomes that repel water, thus keeping them dry despite their aquatic habit. 

 These are not roots!

These are not roots!

Less obvious are the other types of leaves these ferns produce. What looks like roots dangling below the water's surface are actually highly specialized, finely dissected leaves! I was quite shocked to learn this and to be honest, it makes me appreciate these odd little ferns even more. Its on these underwater leaves that the spores are produced. Specialized structures called sporocarps form like tiny nodules on the tips of the leaf hairs.

Sporocarps come in two sizes, each producing its own kind of spore. Large sporocarps produce megaspores while the smaller sporocarps produce microspores. This reproductive strategy is called heterospory. Microspores germinate into gametophytes containing male sex organs or "antheridia" whereas the megaspores develop into gametophytes containing female sex organs or "archegonia." 

As I mentioned above, some species of Salvinia have become aggressive invaders, especially in tropical and sub-tropical water ways. Original introductions were likely via plants released from aquariums and ponds but their small spores and vegetative growth habit means new introductions occur all too easily. Left unchecked, invasive Salvinia can form impenetrable mats that completely cover entire bodies of water and can be upwards of 2 feet thick!

 Sporocarps galore! 

Sporocarps galore! 

Lots of work has been done to find a cost effective way to control invasive Salvinia populations. A tiny weevil known scientifically as Cyrtobagous singularis has been used with great success in places like Australia. Still, the best way to fight invasive species is to prevent them from spreading into new areas. Check your boots, check your boats, and never ever dump your aquarium or pond plants into local water ways. Provided you pay attention, Salvinia are rather fascinating plants that really break the mold as far as most ferns are concerned. 

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3]

 

Getting to Know Elodea

When I think back on it, one of the first plants I ever actively tried growing was waterweed (Elodea canadensis). My 4th grade teacher had invested in a unit on the ecosystem concept. We all brought in 2 liter soda bottles that we craftily turned into mini terrariums. The top half of the terrarium was filled with soil and planted with some grass seed. The bottom half was filled with water and some gravel. In that portion we placed a single guppy and a few sprigs of Elodea

The idea was to teach us about water and nutrient cycles. It didn't work out too well as most of my classmates abandoned theirs not long after the unit was over. Being the avid little nerd that I was, I fell deeply in love with my new miniature ecosystem. The grass didn't last long but the guppy and the Elodea did. Since then, I have kept Elodea in various aquariums throughout the years but never gave it much thought. It is easy enough to grow but it never did much. Today I would like to make up for my lack of concern for this plant by taking a closer look at Elodea

 An example of the soda bottle terrariums

An example of the soda bottle terrariums

The genus Elodea is one of 16 genera that make up the family Hydrocharitaceae and is comprised of 6 species. All 6 of these plants are native to either North or South America, with Elodea canadensis preferring the cooler regions of northern North America. They are adaptable plants and can grow both rooted or floating in a variety of aquatic conditions. It is this adaptability that has made them so popular in the aquarium trade. It is also the reason why the genus is considered a nasty aquatic invasive throughout the globe. For this reason, I do not recommend growing this plant outdoors in any way, shape, or form unless that species is native to your region. 

Believe it or not, Elodea are indeed flowering plants. Small white to pink flowers are borne on delicate stalks at the water's surface. They are attractive structures that aren't frequently observed. In fact, it is such a rare occurrence that trying to figure out what exactly pollinates them proved to be quite difficult. What we do know is that sexual reproduction and seed set is not the main way in which these plants reproduce. 

Anyone who has grown them in an aquarium knows that it doesn't take much to propagate an Elodea plant. They have a remarkable ability for cloning themselves from mere fragments of the stem. This is yet another reason why they can become so invasive. Plants growing in temperate waterways produce a thick bud at the tips of their stems come fall. This is how they overwinter. Once favorable temperatures return, this bud "germinates" and grows into a new plant. In more mild climates, these plants are evergreen. 

One of the most interesting aspects of Elodea ecology is that at least two species, E canadensis and E. nuttallii, are considered allelopathic. In other words, these plants produce secondary chemicals in their tissues that inhibit the growth of other photosynthetic organisms. In this case, their allelopathic nature is believed to be a response to epiphytic algae and cyanobacteria.

Slow growing aquatic plants must contend with films of algae and cyanobacteria building up on their leaves. Under certain conditions, this buildup can outpace the plants' ability to deal with it and ends up completely blocking all sunlight reaching the leaves. Researchers found that chemicals produced by these two species of Elodea actually inhibited the growth of algae and cyanobacteria on their leaves, thus reducing the competition for light in their aquatic environments. 

Elodea make for a wonderful introduction to the world of aquatic plants. They are easy to grow and, if cared for properly, look really cool. Just remember that their hardy nature also makes them an aggressive invader where they are not native. Never ever dump the contents of an aquarium into local water ways. Provided you keep that in mind, Elodea can be a wonderful introduction to the home aquarium. If you are lucky enough to see them in flower in the wild, take the time to enjoy it. Who knows when you will see it again. 

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] 

Meet Snorkelwort

If vernal pools are considered ephemeral then granite pools are downright fleeting. Any organism that specializes in such a habitat must be ready to deal with extremes. That is what makes a little plant known scientifically as Gratiola amphiantha so darn cool. It's what also makes it so darn threatened. 

This tiny member of the Plantaginaceae family is native to the Piedmont province of southeastern North America. It lives out its entire life in shallow pools that form in weathered granitic outcrops. One must really think about the specificity of this sort of habitat to truly appreciate what this little aquatic herb is up against. Pools must be deep enough to hold water just long enough but not too deep to allow normal plant succession. They must have just enough soil to allow these plants to take root but the soil must be thin enough to prevent other vegetation from taking over. They must also be low in nutrients to limit the growth of algae that would otherwise cloud the water. Needless to say, this makes suitable habitat for snorkelwort hard to come by. 

When such conditions are met, however, snorkelwort can be quite prolific. Seeds of this species germinate in late fall and early winter when only a thing veneer of water covers the equally thin soils. Individual plants form a small rosette that sits in wait until rains fill the tiny pools. Once submerged, the rosettes send up thin stem-like structures called scapes. These scapes terminate in two tiny bracts that float at the waters surface. Between the two bracts emerges tiny, white, five petaled flowers. Submerged flowers are also produced but these are cleistogamous flowers that never open and only self-pollinate. This ensures that at least some seeds are produced every growing season. 

When you consider all aspects of its ecology, it is no wonder that snorkelwort is teetering on the edge of extinction. The granitic pools in which it lives are very sensitive to change. It doesn't take much to make them totally unsuitable places to live. Protecting them alone is hard enough. Mining, pollution, littering, and even casual hikers can wipe out entire populations in an instant. Even populations living within the boarders of protected parks have been extirpated by hiking and littering. When you live on the edge, it doesn't take much to fall off. In total, only about 31 populations scattered through Alabama, Georgia, and South Carolina are all that remains of this overlooked little plant. 

The upside to all of this is that numerous stake holders, both public and private, are invested in the ongoing success of this species. Private land owners whose land supports snorkelwort populations are cooperating with botanists to ensure that this species continues to find what it needs to survive. Luckily a sizable chunk of the remaining populations are large enough to support ample genetic diversity and, at this point in time, don't seem to be at any risk of destruction. For a little plant like snorkelwort, a little attention can go a long way. If you know a spot where this interesting little plant grows, tread lightly and appreciate it from a safe distance. 

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3]

 

Semi-Aquatic Orchids

 By Jim Fowler. Copyright © 2017

By Jim Fowler. Copyright © 2017

Orchids have conquered nearly every continent on this planet except for Antarctica. In fact, there seems to be no end to the diversity in color, form, and habit of the world's largest family of flowering plants. Still, it might surprise many to learn that some orchids have even taken to water. Indeed, at least three species of orchid native to Latin and North America as well as a handful of islands have taken up a semi-aquatic lifestyle.

Most commonly encountered here in North America is the water spider orchid (Habenaria repens). It is a relatively robust species, however, considering that even its flowers are green, it is often hard to spot. Though it will root itself in saturated soils along the shore, it regularly occurs in standing water throughout the southeast. Often times, it can be found growing amidst other aquatic plants like pickerel weed (Pontederia cordata) and duck potato (Sagittaria latifolia). Because it can reproduce vegetatively, it isn't uncommon to find floating mats of comprised entirely of this orchid.  

 By Jim Fowler. Copyright © 2017

By Jim Fowler. Copyright © 2017

Living in aquatic habitats comes with a whole new set of challenges. One of these is exposure to a new set of herbivores. Crayfish are particularly keen on nibbling plant material. In response to this, the water spider orchid has evolved a unique chemical defense. Coined "habenariol," this ester has shown to deter freshwater crayfish from munching on its leaves and roots. Another challenge is partnering with the right fungi. Little work has been done to investigate what kinds of fungi these aquatic orchids rely on for germination and survival. At least one experiment was able to demonstrate that the water spider orchid is able to partner with fungi isolated from terrestrial orchids, which might suggest that as far as symbionts are concerned, this orchid is a generalist.

The flowers of the water spider orchid are relatively small and green. What they lack in flashiness they make up for in structure and scent. The flowers are quite beautiful up close. The slender petals and long nectar spur give them a spider-like appearance. At night, they emit a vanilla-like scent that attracts their moth pollinators. 

Photo Credits: Jim Fowler. Copyright © 2017 www.jfowlerphotography.com

Further Reading: [1] [2] [3]

Mayaca!

When I first saw this little plant growing along the boarders of a pond, I thought I was seeing a semiaquatic Lycopod. Was I ever wrong. It turns out I was looking at an angiosperm commonly encountered by aquarium enthusiasts - Mayaca fluviatilis. The genus Mayaca has its own family (Mayacaceae) and its members can be found throughout Southeastern North America, Latin America, the West Indies, and central Africa. It was very exciting to meet one of these plants in person!

Underwater Pollinators

Modern day aquatic plants are highly derived organisms. Similar to dolphins and whales, today's aquatic plants did not originate in their watery environment. Instead, they gradually evolved from land plants living close to the water's edge. One of the biggest challenges for fully aquatic plants involves pollination. Many species overcome this hurdle by thrusting their flowers up and out of the water where there are far more pollen vectors. Others rely on water currents and a little bit of chance. For aquatic plants whose flowers open under water, water pollination, or "hydrophily", has long been the only proposed mechanism. Surely aquatic animals could not be involved in aquatic pollination. Well, a newly published study on a species of seagrass known scientifically as Thalassia testudinum suggests otherwise.

Seagrasses are ecological cornerstones in marine environments. They form vast underwater meadows and are considered one of the world's most productive ecosystems. Most seagrasses are clonal. Because of this, sexual reproduction in this group has mostly been overlooked. However, they do produce flowers that are tucked down in among their leaves. The production of flowers coupled with a surprising amount of genetic diversity have led some researchers to take a closer look at their reproduction.

A team of researchers based out of the National Autonomous University of Mexico decided to look at potential pollen vectors in Thalassia testudinum, a dominant seagrass species throughout the Caribbean and western Atlantic regions. T. tetidinum is dioecious, producing male and female flowers are separate plants. Flowers open for short periods of time and males produce pollen in sticky, mucilaginous strands. The research team had noticed that a wonderfully diverse group of aquatic animals visit these flowers during the night and began to wonder if it was possible that at least some of these could be effective pollinators.

The team was up against a bit of a challenge with this idea. A simple visit to a flower doesn't necessarily mean pollination has been achieved. To be an effective pollinator, an animal must a) visit both male and female flowers, b) carry pollen on their bodies, c) effectively transfer that pollen, and d) that pollen transfer must result in fertilization. To quantify all four steps, the team used a series of cameras, aquariums, and natural mesocosm experiments. What they discovered was truly remarkable.

Not only did a diverse array of marine invertebrates visit the flowers during the duration of the study, they also carried pollen, which stuck to their bodies thanks to the thick mucilage. What's more, that pollen was then deposited on the female flowers, which rake up these invertebrates with their tentacle-like stigmas. Finally, pollen deposited on female flowers did in fact result in fertilization. Taken together, these data clearly demonstrate that animal pollinators do in fact exist in aquatic environments. It is likely that these invertebrates are most effective during periods when water movement is minimized. Water currents likely still make up a significant portion of the pollen transfer between individual plants. Still, this evidence changes the paradigm of aquatic pollination in a big way.

Photo Credits: [1] [2] [3]

Further Reading: [1]