Light Pollution and Plants

I love walking around my town at night. Things really seem to slow down when the sun sets. Growing up in the country, my evening walks were lit only by the moon. Now that I live in civilization, however, street lights punctuate the darkness on every block. Walking around I can't help but wonder what all of this artificial light is doing to our photosynthetic neighbors. 

The vast majority of plants need light to make food. It doesn't matter if this light comes from the sun or a high powered electric light, as long as it is strong enough for photosynthesis. Even weaker wavelengths of light serve a purpose for our botanical friends. Plants can sense the relative length of uninterrupted darkness in their environment and they use that information for myriad internal processes. Its this dependence on light that makes many plant species vulnerable to our addiction to artificial lighting.

Just because a light isn't strong enough for photosynthesis doesn't mean it isn't affecting nearby plants. This is especially true for plants that use day length for timing events like bud break, flowering, and dormancy. The type of lighting favored by most municipalities emit wavelengths that peak especially high in the red to far-red ratio of the electromagnetic spectrum, which makes them particularly adept at disrupting plant photoperiods.

One of the most obvious effects of artificial lighting on plants can readily be seen in street trees growing in temperate regions. Though light sensitivity varies from species to species, trees growing near street lights tend to hold onto their leaves much longer in the fall than trees farther away. Because artificial lighting is enough to trick the red to far-red receptors in plants, it can "convince" trees that the days are longer than they actually are. Additional photosynthesis may not seem that bad but holding onto leaves longer makes trees more susceptible to ice damage. 

late fall.JPG

The effects of artificial lighting continues into spring as well. Trees growing near lights tend to break buds and flower earlier in the spring. This too makes them susceptible to frost damage. Early flowering plants run the risk of losing their entire reproductive effort by blooming before the threat of frost is gone. This can really mess up their relationship with pollinators. 

The effects of artificial lighting can even influence the way in which plants grow. Research has found that plants growing near street lights had larger leaves with more stomatal pores and these pores remained open for considerably longer than plants growing under unlit night conditions. This made them more susceptible to pollution and drought, two stressors that are all too common in urban environments. This issues is made much worse if the artificial lighting never turns off throughout the night. 

Artificial lighting affects more than just plant physiology too. Scaling up, the effects of night lights can have whole ecosystem consequences. For instance, researchers found that artificial lighting was enough to change the entire composition of grassland communities. Some plants responded well to artificial lights, producing more biomass and vegetative offshoots to the point that they pushed out other species. This was compounded by the change in reproductive output, with certain species showing higher seed production than others.


Changes in plant physiology, phenology, and composition also affect myriad other organisms in the environment. Changes in the timing of flowering or bud break can disrupt things like insects and birds that rely on these events for food and shelter. Research even suggests that forest regeneration is being altered by artificial lighting. Seed dispersers such as bats often will not fly into well-lit areas at night, therefore reducing the amount of seeds falling in those areas. Such research is still in its infancy meaning we have a lot more to learn about how artificial lighting is disrupting natural events.

Light pollution is so much more than an aesthetic issue. Artificial lighting is clearly having pronounced effects on plant life. Disrupt plants and you disrupt life as we know it. Certainly more work is needed to tease out all the ways in which lights influence plants, however, it is clear that we must work hard on reducing light pollution around the globe.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3]

What Are Plants Made Of?

Have you ever thought about what plants are made of? I mean, really thought about it. Strip away all the splendor and glory of all the different plant species on this planet and really take a close look at how plants grow and make more plants. It is a fascinating realm and it all has to do with photosynthesis. To go from photons given off by our nearest star to a full grown plant is quite the journey and, at the end of that journey, you may be surprised to learn what plants are all about.

It starts with photons. Leaving the sun they travel out into the universe. Some eventually collide with Earth and make their way to the surface. Plants position their leaves to absorb these photons. Energy from the photons is used to split water molecules inside the chloroplasts. In the process of splitting water, oxygen is released as a byproduct (thanks plants!). Splitting water also releases electrons and hydrogen ions.

These electrons and hydrogen ions are used to make energy in the form of ATP. Along with some electrons, ATP is then used in another cycle known as the Calvin cycle. The point of the Calvin cycle is to take in CO2 and use the energy created prior to reduce carbon molecules into chains of organic molecules. Most of the carbon in a plant comes from the intake of CO2. Through a series of steps (I will spare you the details) plants piece together carbon atoms into long chains. Some of these chains form glucose and some of that glucose gets linked together into cellulose.

Cellulose is the main structural component of plant cells. From the smallest plants in the world (genus Wolffia) all the way up to the largest and tallest redwoods and sequoias (incidentally some of the largest organisms to have ever existed on this planet) , all of them are built out of cellulose. So, in essence, all the plant life you see out there is literally built from the ground up by carbon originating from CO2 gas. Pretty incredible stuff, wouldn't you agree?

A Surprising Realization About Leaf Windows


I will never forget the first time I laid eyes on a Lithops. These odd little succulents are truly marvels of evolution. The so-called "living stones" really do earn their name as most are exquisitely camouflaged to match the gravelly soils in which they grow. If bizarre color patterns weren't enough, Lithops, as well as many other succulents, live their lives almost completely buried under the soil. All one ever really sees is the very tip of their succulent leaves and the occasional flower.


It is the tips of those leaves that make people swoon. Lithops belong to a hodgepodge mix of succulent genera and families that produce windowed leaves. Aside from their striking patterns, the tips of their leaves are made up of layers of translucent cells, which allow light to penetrate into the interior of the leaf where the actual photosynthetic machinery is housed. Their semi-translucent leaves, coupled with their nearly subterranean habit, have led to the assumption that the leaf windows allow the plants to continue photosynthesis all the while being mostly buried. Despite the popularity of this assumption, few tests had been performed to see whether or not the windows function as we think. All of that changed back in the year 2000.

As hinted at above, a variety of succulent plants have converged on a similar leaf morphology. This is where things get a bit strange. Not all plants that exhibit the leaf window trait find themselves buried in the soil. Others, such as Peperomia graveolens for example, produce the photosynthetic tissues well above the soil. Examples like this led at least some researchers to second guess the common assumption of windows increasing photosynthesis and the resulting investigations were surprising to say the least. 

Peperomia graveolens

Peperomia graveolens

A duo of researchers decided to test the assumption that leaf windows increase photosynthesis by channeling light directly to the photosynthetic machinery inside. The researchers used tape to cover the leaf windows of a variety of succulent plant species. When they compared photosynthetic rates between the two groups, not a single difference was detected. Plants who had their leaves covered photosynthesized the same amount as plants with uncovered leaves. These data were quite shocking. Because they tested this assumption across a variety of plant species, the results suggested that the function of windowed leaves isn't as straight forward as we thought. These findings raised more questions than they solved.

Subsequent experiments only served to reinforce the original findings. What's more, some even showed that plants with covered windows actually photosynthesized more than plants with uncovered windows. It seems that windowed leaves function in a completely opposite manner than the popular assumption. The key to this patterns may lie in heat exchange. When the researchers took the temperature of the interior of the leaves in each group, they found that internal leaf temperatures were significantly higher in the uncovered group and this has important implications for photosynthesis for these species.

Fenestraria rhopalophylla

Fenestraria rhopalophylla

High leaf temperatures can be extremely damaging to photosynthetic proteins. If too much light filters through, leaf temperatures can actually hit damaging levels. This is one reason that many of these plant species have adopted this bizarre semi-subterranean habit. Plants that experienced such high temperatures throughout the course of a day had permanent damage done to their photosystems. This led to a reduction of fitness over time. Such lethal temperature spikes did not happen to leaves that had been covered.

Haworthia truncata

Haworthia truncata

If you're anything like me, at this point you must be questioning the role of the leaf windows entirely. Why would they be there if they may actually hurt the plants in the long run? Well, this is where knowing something about the habitat of each species comes into play. Not all leaf windows are created equal. The patterns of their windows vary quite a bit depending on where the plants evolved. In 2012, a paper was published that looked at the patterns of Lithops leaf windows in relation to their place of origin. Not all Lithops grow in the same conditions and various species hail from regions with vastly different climates.

What the paper was able to demonstrate was that Lithops native to regions that experience more acerage annual rainfall have much larger window areas on their leaves than Lithops native to drier regions. Again, the underpinnings of this discovery nonetheless have to do with light availability. Wetter areas experience more cloud cover than drier areas so Lithops growing where its cloudy have to cope with a lot less sun than their more xeric-growing cousins. As such, having a larger window allows more diffuse light into the leaf for photosynthesis without having to worry about the damaging temperatures.


The reverse is true for Lithops from drier climates. They have smaller leaf windows because they experience more days with direct sun. These species tended to have much smaller windows, which reduced the amount of sunlight entering the leaf. This serves to keep internal leaf temperatures within a much safer range, thus protecting the delicate proteins inside. As it turns out, leaf windows seem to represent a trade-off between photosynthesis and overheating. What's more, some window-leaved species seem to be evolving away from the light transmitting function of their cousins living in shadier conditions. If anything, this serves as a reminder that simply because something seems obvious, that doesn't mean its always true. Stay curious, my friends!

Photo Credits: [1] [2] [3] [4] [5] [6]

Further Reading: [1] [2] [3] [4] [5] [6]

The World's Only (Known) Photosynthetic Vertebrate

You may be asking yourself right now why I have posted a picture of a salamander this morning. This is a plant blog after all! Well, what I am about to tell you may seem a bit crazy, but I assure you this discovery has opened up some doors that science never really considered a possibility before. The yellow spotted salamander (Ambystoma maculatum) is the first and only (known) photosynthetic vertebrate ever discovered!

That's right. You heard me. A photosynthetic animal. More accurately speaking, it is the embryos of this species that undergo photosynthesis. To understand why this happens we must back up a little bit. Yellow spotted salamanders are a species of mole salamander that can be found in wet areas of eastern North America. They spend most of their adult lives underground, hiding beneath logs and rocks in the forest, feeding on any manner of invertebrates. Once a year (around this time) adult yellow spotted salamanders undertake a massive migration down to the pools where they mate. On the first few warm, rainy nights, thousands of salamanders can be seen trucking their way to vernal pools and ponds to breed. It is an amazing sight to behold.

The thing about yellow spotted salamanders is they will only breed in fishless ponds. Their larvae would be an easy meal for many predatory fish species. The problem that arises out of this breeding strategy is that fishless ponds tend to be very low in oxygen. It has long been known that the eggs of this species form a symbiotic relationship with an algae. The algae produce oxygen for the developing embryo and the embryo feeds the algae via its nitrogen rich waste and CO2. This relationship was always thought to be external, that is until Ryan Kerney of Dalhousie University in Halifax, Nova Scotia discovered that embryos of a certain age actually had algae living within their cells.

They algae don't seem to start off inside the cells though. This may be why this relationship wasn't discovered earlier. Roger Hangarter at Indiana University found that it isn't until parts of the salamander's nervous system begin to develop that the algae move into the embryo and set up shop. The algae then reside near the salamander's mitochondria, which are the powerhouses of the cell. So where are the algae coming from? While more research needs to be done, Karney also discovered the presence of algae in the oviducts of adult female spotted salamanders. It is looking like mother salamanders are actually passing the algae on to their offspring. 

Though this is the first and only instance we know of this sort of photosynthetic relationship in vertebrate animals, this discovery has opened the door for exploring the possibility of other photosynthetic symbionts. It has also allowed scientists a different avenue to explore just how cells recognize and deal with foreign bodies. We live in such an amazing world!

Further Reading: [1] [2] [3]


Alien Plants

Confession: I am a huuuge science fiction nerd. That's right, when I am not reading and writing about botany or ecology, I like to unwind with the works of authors such as Arthur C. Clarke, Robert Heinlein, and David Gerrold. By and large my favorite sci fi topics are those dealing with aliens. Pondering alien ecology and culture is a fun thought experiment. This obsession definitely bleeds into my day to day life. I have to admit that one of my greatest hopes is that we will discover life elsewhere in the universe. I'm not alone in this either. Many have devoted their careers to the search for extraterrestrial life. 

As any good scientist knows, we have to temper our expectations to the realm of reality. That being said, we have a very small sample size to base our expectations on. We only know of the carbon based life of which we are part. This colors the way in which we think and search. Our search for habitable planets for instance takes into account all of the parameters that make Earth special like liquid water. By looking for planets like ours, we are at least narrowing the possibilities to conditions we know can support life (at least as we know it). However, we can't let Earth be the only lens through which we investigate. That is where researchers such as Dr. Nancy Kiang come in. 

Dr. Kiang's work focuses on modeling the conditions, both solar and atmospheric, of other planets in order to see which of them may be suitable for photosynthetic life. Certainly photosynthetic life isn't the only possibility out there but it sure is a good place to start. As on our planet, photosynthetic organisms are able to harness energy from the giant nuclear fusion reaction we call the Sun and turn that into food. However, not all suns are like ours. Alien "plants" may have to take advantage of stars very different from our own. 

By modeling the conditions on the surface of hypothetical planets, Dr. Kiang has been able to identify the various wavelengths of energy that would be available to any organism primed to take advantage. For instance, the radiation given off by red dwarf stars would only provide a mere fraction of the visible light given off by our sun. "Plants" on a planet orbiting a red dwarf would need to absorb as much light as possible in order to photosynthesize as we understand it. As such, these alien "plants" would likely appear black to us. 

Absorption is the key to this concept. The reason plants on Earth appear green is because that is the wavelength they do not absorb. Despite the fact that green light is the most abundant on our planet, it is quite weak in comparison to wavelengths in the red and blue regions. Terrestrial plants absorb reds and blues and reflect green, which gives them their characteristic color. Because of this, Nancy and her team feel that it would be highly unlikely to find blue photosynthetic organisms elsewhere in the universe. Its simply too powerful a wavelength to not be utilized.

Still, until we find evidence of life on other planets, this is all a fun thought experiment. However, before you go writing off such works as mere entertainment, remember that without such scientific speculation, we are left in the dark on exactly where and how to search for life elsewhere in the universe. By working out the possibilities of life on other planets, researchers like Dr. Kiang are helping to focus the search for extraterrestrial life. 

Photo Credit: Richard Mosse

Further Reading: [1]


How Leaf Veins Changed the World

When we think of the dominance of flowering plants on the landscape, we usually invoke the evolution of flowers and seed characteristics such as an endosperm and fruit. However, evolutionary adaptations in the structure of the angiosperm leaf may have been one of the critical factors in the massive diversification that elevated them to their dominant position on the landscape today.

Leaves are the primary organs used in water and gas exchange. They are the centers of photosynthesis, allowing plants to take energy from our closest star and turn it into food. To optimize this system, plants must balance water loss with transpiration in order to maximize their energy gain. This requires a complex plumbing system that can deliver water where it needs to be. It makes sense that plant physiology should maximize vein production, however, there are tradeoffs in doing so. Veins are not only costly to construct, they also displace valuable photosynthetic machinery.

It appears that this is something that flowering plants do quite well. Because leaves fossilize with magnificent detail, researchers are able to look back in time through 400 million years of leaf evolution. What they found is quite incredible. There appears to be a consistent pattern in the vein densities between flowering and non-flowering plants. The densities found in angiosperm leaves both past and present are orders of magnitude higher than all non-flowering plants. These high densities are unique to flowering plants alone.

This innovation in leaf physiology allowed flowering plants to maintain transpiration and carbon assimilation rates that are three and four times higher than those of non-flowering plants. This gives them a competitive edge across a multitude of different environments. The evolution of such dense vein structure also had major ramifications on the environment.

This massive change in transpiration rates among the angiosperm lineage is likely to have completely changed the way water moved through the environment. These effects would be most extreme in tropical regions. Today, transpiration from tropical forests account for 30-50% of precipitation. A lot of this has to do with patterns in the intertropical convergence zone, which ensures that such humid conditions can be maintained. However, in areas outside of this zone such as in the Amazon, a high abundance of flowering plants with their increased rates of transpiration enhances the amount of rainfall and thus forms a sort of positive feedback. Because precipitation is the single greatest factor in maintaining plant diversity in these regions, increases in rainfall due to angiosperm transpiration effectively helps to maintain such diversity. As angiosperms rose to dominance, this effect would have propagated throughout the ecosystems of the world.

Photo Credit: Bourassamr (Wikimedia Commons)

Further Reading:

Shady Spines

Tephrocactus articulatus

Tephrocactus articulatus

Fondling cacti with your bare hands is often ill-advised. These spiny plants are icons of plant defense mechanisms. Cactus spines are actually modified leaves/bud scales. They develop from a bundle of cells called "primordia" that are nearly indistinguishable from leaf primordia. Unlike leaves, however, cactus spines are not made up of living tissue. The genes for leaf development are shut off in these cells and instead, genes for wood fibers are ramped up, creating the stiff structures many of us have had to pry out of our skin.

It is easy to assume that spines are simply there for defense. For a lot species they certainly do the trick. However, for many other species, spines serve another important purpose - they provide shade. This is exemplified by the fact that cacti growing in rainforests and cloudy highlands often have reduced or no spines at all.

For cacti living in the sun-baked regions of the world, sunburn is a serious issue to contend with. Full sunlight can damage sensitive photosynthetic machinery and while intense UV rays wreak havoc on the genome. As such, any adaptation that can shelter these sensitive tissues to some degree is advantageous.

Cephalocereus senilis

Cephalocereus senilis

Spines also buffer the cactus from huge temperature swings. Think of fuzzy or papery spines as a sort of blanket covering the cactus. These spines create a boundary between air immediately surrounding the cactus and the cold nighttime air of these arid climates. This insulation can come in handy as desert temperatures can drop quite low when the sun goes down.

Another benefit spines have is to catch and direct water to the base of the plant. Rain is often scarce in these habitats so when it does occur, a cactus needs to be ready. Water collects on the spines and then runs down to the base. They also act as dew catchers, causing water vapor to condense on their surfaces. In this way, cacti are able to take advantage of every last drop available.

Though they certainly offer some protection, many of these shade spines are too thin and flexible to deter a hungry herbivore. That is where secondary compounds come into play. It is no wonder why some cacti are extremely toxic to herbivores. Whether they are for shade, protection, or water harvesting, cacti spines have managed to capture our imagination and knowing a bit more about their function makes these plants even more impressive.

Photo Credit: [1] [2]

Further Reading: [1] [2] [3]

Fall Leaves of the Putty-Root Orchid

Whereas most plants here in the Northern Hemisphere have largely geared down for the long winter, there is one species that has only recently begun a new stage of growth. Though it may seem damaging to produce leaves when a hard frost is just around the corner, that is exactly what this plant is doing. What's even more bizarre is that the plant in question is an orchid.

The putty-rood orchid (Aplectrum hyemale) may seem strange to most. Though it flowers during the same time as most of our terrestrial orchids (May through June), its display can be hard to track down. In fact, lacking any knowledge of a specific location, it is more likely that you will stumble across one before you pick it out of the hustle and bustle on the forest floor.

Flowering occurs at a different time than leaf out. The solitary flower stalk gives way to a single leaf starting in late summer or early fall. Why the heck would this plant start its photosynthetic lifecycle when everything else is about ready to go dormant? The answer is competition. Summer is not a bright season for those growing on the forest floor. This is especially true for a plant that only produces a single leaf.

What the putty-root is doing with its oddly timed leaf production is taking advantage of a dormant canopy. With trees and herbaceous leaves out of the way, the putty-root is able to soak up as much sun as it can get. This is a similar strategy adopted by spring ephemerals around the globe. But what does the plant have to gain from having leaves in the fall? Why not wait until spring to leaf out?


As it turns out, it simply doesn't have to. The photosynthetic machinery within the leaves of the putty-root perform exceptionally well at low temperatures. Whereas most plants simply can't photosynthesize when it starts getting too cold, the putty-root is able to photosynthesize at temperatures as low as 2° C (35.6° F)! Not only does this enable the plant to get a jump start come spring, its also able to make food throughout most of fall and even early winter.

There does seem to be a limit to this. Once temperatures drop below 2° C, the machinery can't keep up and photosynthesis grinds to a halt. This is further complicated by the fact that the leaves are often buried under snow for months at a time. Certainly its mycorrhizal associations help feed the plant, even when it isn’t actively photosynthesizing. Regardless, this strategy is a great way of getting an extra kick while everything else is slowing down. Stories such as this bring to mind the story of the tortoise and the hare. Sometimes slow and steady really does win the race!

Photo Credit: Lance Merry (

Further Reading: [1] [2] [3]

CAM Photosynthesis



I was in a lecture the other day and I heard something that made the plant nut inside of me chuckle. The professor was trying to make the point that C3 photosynthesis is the most common photosynthetic pathway on the planet. To do this he said "it is the vanilla pathway." In this context, he was using vanilla as an adjective meaning "plain or ordinary." Of course, this was all very facetious, however, I thought it interesting and funny how, if taken literally, that statement was just plain wrong. 

I have written before about the reproductive ecology of Vanilla orchids ( They are anything but vanilla the adjective. The other part of the statement that was wrong (again, if taken literally) is that C3 is the photosynthetic pathway of the vanilla orchid. In reality, vanillas are CAM photosynthesizers.

Last week I wrote about the C4 pathway and how it has helped plants in hot, dry places, but the CAM pathway is yet another adaptation to such climates. The interesting thing about CAM photosynthesis is that it separates out the different reactions in the photosynthetic pathway on a temporal basis. 

CAM is short for Crassulacean acid metabolism. It was first described in succulents in the family Crassulaceae. Hence the name. Similar to the C4 pathway, CO2 is taken into the leaves of the plant and stored as an organic acid. This is where the process differs. For starters, having acid hanging around inside your leaves is not necessarily a good thing. CAM plants deal with this by storing it in large vacuoles. That is one reason for the succulent appearance of many CAM species. 

Because these plants so often grow in hot, dry climates, they need to minimize water loss. Water evaporates from holes in the leaves called stomata so to avoid this, these holes must be closed. However, closing the stomata means not letting in any CO2 either. Whereas C4 plants get around this by only opening their stomata during the cooler hours of the day, CAM plants forgo opening their stomata entirely when the sun is up. 

Instead, CAM plants open their stomata at night when the vapor pressure is minimal. This ensures that water loss is also minimal.  Like camels storing water for lean times, CAM plants store CO2 as organic acid to use when the sun rises the next day. In this way, CAM plants can close their stomata all the while the hot sun is baking the surrounding landscape yet still undergo ample photosynthesis for survival. 

Not all orchids do this. In fact, some can switch photosynthetic pathways in different tissues. However, there are many other CAM plants out there including some very familiar species like pineapples, cycads, peperomias, and cacti. If you're like me and prone to talking to your plants, it is probably best to talk to your CAM plants after the sun has set. Not only does it confuse neighbors and friends, it provides them with CO2 when they are actively absorbing it. 

Photo Credit: C T Johansson (Wikimedia Commons)

Further Viewing:

Why All the Lace?


All too often, botanizing is restricted to the land. Sure, there is the occasional foray to a marsh or bog but, for the most part, relatively few plant folk like to get wet in their quests to meet new and exciting plant species. There is an entire world of aquatic plants that don't get enough credit. One such plant is Aponogeton madagascariensis, the lace plant.

Anyone into planted aquariums has undoubtedly come across this species at least once. It is kind of a holy grail of aquarium gardening. Hailing from Madagascar, this is one of the truly aquatic Aponogeton species. Though there are a few different geographic variations, they are all easily recognized by the lacy appearance of their leaves. Known as "fenestration," the lacy structure is the result of programmed cell death during the development of the leaves. As interesting as that fact is in and of itself, the question remains, what is the function of fenestration?

There have been many hypotheses put forward to explain this phenomenon. Some believe it helps to reduce damage from turbulence wheras others believe it helps to increase movement around the leaves and helps avoid stagnation. The truth is, no one is entirely certain. However, a clue to the benefits of fenestration has come out of work done on an entirely unrelated terrestrial plant species.

The epiphytic arum commonly referred to as a Swiss cheese plant (Monstera deliciosa) also exhibits fenestrated leaves. Researchers at Indiana University in Bloomington have found that the holes in the leaves may actually help gather more light in a shaded environment. The understory of a rainforest and the underwater habitat in which the lace plant grows may be more similar in light availability than you would think. How would holes in the leaves allow the plant to gather more light?

As it turns out, a fenestrated leaf can grow much larger while still maintaining the same amount of surface area. By spreading out its surface area over a larger region, a fenestrated leaf is actually more efficient at gathering what limited light is available. More work needs to be done to see if this is truly the case for the lace plant but the idea is tantalizing to say the least. Sadly, like too much of Madagascar's wildlife, the lace plant is becoming quite rare in the wild due to habitat destruction. So, the next time you come across one of these in an aquarium store, make sure to give this plant the attention it deserves. 

Further Reading: [1] [2] [3]