Mutant Orchids Have a lot to Teach Us About Parasitic Plants

A) Albino and (B) green individual of  Goodyera velutina .

A) Albino and (B) green individual of Goodyera velutina.

The botanical world is synonymous with the idea of photosynthesis. Plants take in carbon dioxide and water and utilize light to make their own food. However, not all plants make a living this way. There are many different species of plants that have evolved a parasitic lifestyle to one degree or another. Some of my favorites are those that parasitize mycorrhizal fungi. We call these plants “mycoheterotrophs” and they are fascinating to say the least. Orchids are especially prone to this strategy, with over 1% of all known species having completely lost the ability to photosynthesize.

Our knowledge of the mycoheterotrophic strategy is fragmentary at best. We still don’t fully understand things like how the plants obtain what they need from the fungus nor how they are able to maintain their parasitic lifestyle without the fungus catching on and rejecting the one-sided partnership. This is not to say we know nothing. In fact, as technologies advance, we are unlocking at least some of the mysteries of mycoheterotrophic plants. Some of the best advances come from studying mutant, albino orchids. To understand how, we have to take a closer look at the “average” orchid lifestyle.

Orchids in general make great candidates for understanding the evolution of mycoheterotrophy because all of them start their lives as parasites. Orchids produce some of the smallest seeds in the plant kingdom and without the help of mycorrhizal fungi, they would never be able to germinate. For much of their early life, orchids rely on fungi to provide them with both their mineral and carbohydrate needs. Only after the orchids are large enough to grow leaves will most of them start to give back to their fungal partners in the form of carbohydrates generated from photosynthesis.

Still, many orchids never fully let go of this parasitic lifestyle. This is especially true for orchids living under dense forest canopies. With light in limited supply, many orchids adopt a mixotrophic lifestyle. Essentially this means that although they actively photosynthesize, they nonetheless rely on fungi to provide them with both carbohydrates and minerals. Mixotrphy is likely the most wide-spread orchid strategy and it has been hypothesized that it is also the first step along the path to becoming fully parasitic. This is where the mutant orchids enter the equation.

(A) Albino and (B) green individuals of  Epipactis helleborine

(A) Albino and (B) green individuals of Epipactis helleborine

Every once in a while, some orchids will germinate and grow into albino versions of their species. Without the ability to produce chlorophyll, these mutants should be destined for a quick death. Such is not the case for many of these orchids. Albino orchids often go on to live full lives, growing and flowering just like their photosynthetic progenitors. Although they do exhibit signs of reduced fitness, the fact that they are able to live at all brings up a lot of questions ready for science to tackle.

Recent investigations into the lives of these albino mutants has revealed some interesting insights into how mycoheterotrophy may have evolved in the first place. By studying the fungal partners of both healthy plants and the albinos, researchers have been able to demonstrate that albinos are doing things a bit differently than their photosynthetic parents. Using isotopes of carbon and nitrogen, scientists are discovering that the albinos have switched their interaction with the fungi in such a way that they more resemble fully mycoheterotrophic orchid species. This is done despite the fact that both albinos and their fully functional parents associate with the same guild of mycorrhizal fungi.

Another interesting difference between albinos and their photosynthetic parents is the fact that the genes involved both antioxidant metabolism and metabolite transfer (mainly carbon in this case) were more active in the albinos than they were in functioning plants. The uptick in gene functioning related to antioxidant metabolism suggests that the mutant plants are undergoing greater oxidative stress than their functional parents. This may have something to do with how the albinos are able to obtain nutrients from their fungal partners. It is thought that mycoheterotrophs actively digest parts of the fungi, which allows them to access the carbon and minerals they need to survive. This process exposes their cells to reactive oxygen compounds that can be very damaging. Antioxidants would help to reduce such damage.

The uptick in genes associated with metabolite transfer was more surprising because it suggests that despite being parasites, the plants are actively transferring substances back to the fungi. It has long been assumed that mycoheterotrophy was a one way street, with fungi transferring nutrients to plants only. These genes now suggest that, at least in some species, such transfer is a two-way street. The exact nature of this two-way transfer remains a mystery and certainly brings up many more questions that must be asked before we can better understand this relationship.

All of this is not to say that such albino mutants are fruitful “next steps” in the evolution of these species. Far from it, in fact. Two things that most albino orchid variants have in common is the fact that they are rare and, of those that have been studied, produce far fewer seeds. There are a lot of anatomical and physiological differences between true mycoheterotrophic species and albino variants and it appears that without those anatomical adaptations, the albinos are a lot less fit than their photosynthetic parents. As authors Selosse and Roy put it:

“non-chlorophyllous variants are likely to represent unique snapshots of failed transitions from mixotrophy to mycoheterotrophy. They are ecological equivalents to mutants in genetics, that is, their dysfunctions might suggest what makes mycoheterotrophy successful. Although their determinism remains unknown, they offer fascinating models for comparing the physiology of mixo- and mycoheterotrophs within similar genetic backgrounds.”

Mutants are strange indeed but with the right kinds of questions and approaches, they have a lot to teach us about ecology, evolution, and life at large.

Photo Credits: [1] [2]

Further Reading: [1] [2] [3]

Are Crickets Dispersing Seeds of Parasitic Plants?


Parasitic plants lead a rather unique lifestyle. Many have foregone photosynthesis entirely by living off fungi or their photosynthetic neighbors. Indeed, there are many anatomical and physiological adaptations that are associated with making a living parasitically. Whether they are full parasites or only partial, one thing that many parasitic plants have in common are tiny, dust-like seeds. Their reduced size and thin seed coats are generally associated with wind dispersal, however, there are always exceptions to the rule. Recent evidence has demonstrated that a handful of parasitic plants have evolved in response to a rather unique seed dispersal agent - camel crickets.

A research team based out of Japan recently published a paper describing a rather intriguing seed dispersal situation involving three species of parasitic plants (Yoania amagiensis - Orchidaceae, Monotropastrum humile - Ericaceae, and Phacellanthus tubiflorus - Orobanchaceae). These are all small, achlorophyllous herbs that either parasitize trees directly through their roots or they parasitize the mycorrhizal fungi associated with said trees. What's more, each of these species are largely inhabitants of the dense, shaded understory of rich forests.

These sorts of habitats don't lend well to wind dispersal. The closed forest canopy and dense understory really limits wind flow. It would appear that these three plant species have found away around this issue. Each of these plants invest in surprisingly fleshy fruits for their parasitic lifestyle. Also, their seeds aren't as dusk-like as many of their relatives. They are actually quite fleshy. This is odd considering the thin margins many parasitic plants live on. Any sort of investment in costly tissues must have considerable benefits for the plants if they are to successfully get their genes into the next generation.

Fleshy fruits like this are usually associated with a form of animal dispersal called endozoochory. Anyone that has ever found seed-laden bird poop understands how this process works. Still, simply getting an animal to eat your seeds isn't necesarly enough for successful dispersal. Seeds must survive their trip through the gut and come out the other end relatively in tact for the process to work. That is where a bit of close observation came into play.

After hours of observation, the team found that the usual frugivorous suspects such as birds and small mammals showed little to no interest in the fruits of these parasites. Beetles were observed munching on the fruits a bit but the real attention was given by a group of stumpy-looking nocturnal insects collectively referred to as camel crickets. Again, eating the fruits is but one step in the process of successful seed dispersal. The real question was whether or not the seeds of these parasites survived their time inside either of these insect groups. To answer this question, the team employed feeding trials.

They compared seed viability by offering up fruits to beetles and crickets both in the field and back in the lab. Whereas both groups of insects readily consumed the fruits and seeds, only the crickets appeared to offer the greatest chances of a seed surviving the process. Beetles never pooped out viable seeds. The strong mandibles of the beetles fatally damaged the seeds. This was not the case for the camel crickets. Instead, these nocturnal insects frequently pooped out tens to hundreds of healthy, viable seeds. Considering the distances the crickets can travel as well as their propensity for enjoying similar habitats as the plants, this stacks up to potentially be quite a beneficial interaction. 

The authors are sure to note that these results do not suggest that camel crickets are the sole seed dispersal agents for these plants. Still, the fact that they are effective at moving large amounts of seeds is tantalizing to say the least. Taken together with other evidence such as the fact that the fruits of these plants often give off a fermented odor, which is known to attract camel crickets, the fleshy nature of their fruits and seeds, and the fact that these plants present ripe seed capsules at or near the soil surface suggests that crickets (and potentially other insects) may very well be important factors in the reproductive ecology of these plants.

Coupled with previous evidence of cricket seed dispersal, it would appear that this sort of relationship between plants and crickets is more widespread than we ever imagined. It is interesting to note that relatives of both the plants in this study and the camel crickets occur in both temperate and tropical habitats around the globe. We very well could be overlooking a considerable component of seed dispersal ecology via crickets. Certainly more work is needed.

Photo Credits: [1]

Further Reading: [1] [2]