The Peculiarly Tiny World of Buxbaumia Mosses

5816847718_70e2396688_o.jpg

Bug moss, bug-on-a-stick, humpbacked elves, elf-cap moss… Who knew there could be so many names for such tiny mosses. Despite their small stature, the mosses in the genus Buxbaumia have achieved something of a celebrity status to those aware of their existence. To find them, however, you need a keen eye, lots of patience, and a bit of luck.

Buxbaumia aphylla

Buxbaumia aphylla

Buxbaumia comprises something like 12 different species of moss scattered around much of the Northern Hemisphere as well as some parts of Australia and New Zealand. They are ephemeral in nature, preferring to grow in disturbed habitats where competition is minimal. More than one source has reported that they are masters of the disappearing act. Small colonies can arise for a season or two and then disappear for years until another disturbance hits the reset button and recreates the conditions they like.

Buxbaumia viridis

Buxbaumia viridis

I say you must have a keen eye and a lot of patience to find these mosses because, for much of their life, the exist on a nearly microscopic scale. Buxbaumia represents and incredible example of a reduction in body size for plants. Whereas the gametophytes of most mosses are relatively large, green, and leafy, Buxbaumia gametophytes barely exist at all. Instead, most of the “body” of these mosses consists of thread-like strands of cells called “protonema.” Though all mosses start out as protonema following spore germination, it appears that Buxbaumia prefer to remain in this juvenile stage until it comes time to reproduce.

Buxbaumia viridis

Buxbaumia viridis

Considering how small the protonemata are, there has been more than a little confusion as to how Buxbaumia manage to make a living. Early hypotheses suggested that these mosses were saprotrophs, living off of nutrients obtained from chemically digesting organic material in the soils. However, it is far more likely that these mosses rely heavily on partnerships with mycorrhizal fungi and cyanobacteria for their nutritional needs. It is thought that what little photosynthesis they perform is done via their protonema mats and developing sporophyte capsules.

Buxbaumia viridis

Buxbaumia viridis

Speaking of sporophytes, these are about the only way to find Buxbaumia in the wild. They are also the source of inspiration for all of those colorful common names. Compared to their gemetophyte stage, Buxbaumia sporophytes are giants. Fertilization occurs at some point in the fall and by late spring or early summer, the sporophytes are ready to release their spores. The size and shape of these capsules makes a lot more sense when you realize that they rely on raindrops for dispersal. When a drop impacts the flattened top of a Buxbaumia capsule, the spores are ejected into the environment and with any luck, will be carried off to another site suitable for growth.

Buxbaumia viridis

Buxbaumia viridis

I encourage you to keep an eye out for these plants. It goes without saying that data on population size and distribution is often lacking for such cryptic plants. Above all else, imagine how rewarding it would be to finally cross paths with this tiny wonders of the botanical world. Happy botanizing!

Photo Credits: [1] [2] [3] [4] [5] [6]
Further Reading: [1] [2] [3]


On the Flora of Antarctica

Musgo_Antartico.jpg

Antarctica - the frozen continent. It is hard to think of a place on Earth that is less hospitable to life. Yet life does exist here and some of it is botanical. Though few in number, Anarctica’s diminutive flora is able to eke out an existence wherever the right conditions present themselves. It goes without saying that these plants are some of the hardiest around.

It is strange to think of Antarctica as having any flora at all. How many descriptions of plant families and genera say something to the effect of “found on nearly every continent except for Antarctica.” It didn’t always used to be this way though. Antarctica was once home to a diverse floral assemblage that rivaled anything we see in the tropics today. Millions upon millions of years of continental drift has seen this once lush landmass positioned squarely at Earth’s southern pole.

Antarctica_6400px_from_Blue_Marble.jpg

Situated that far south, Antarctica has long since become a frozen wasteland of sorts. The landscape is essentially a desert. Instead of no precipitation, however, most water in this neck of the woods is completely locked up in ice for most of the year. This is one reason why plants have had such a hard time making a living here. That is not to say that some plants haven’t made it. In fact, a handful of species thrive under these conditions.

When anyone goes looking for plants in Antarctica, they must do so wherever conditions ease up enough for part of the year to allow terrestrial life to exist. In the case of this frozen continent, this means hanging out along the coast or one of handful of islands situated just off of the mainland. Here, enough land thaws during the brief summer months to allow a few plant species to take root and grow.

Antarctic hair grass ( Deschamsia antarctica )

Antarctic hair grass (Deschamsia antarctica)

The flora of Antarctica proper consists of 2 flowering plant species, about 100 species of mosses, and roughly 30 species of liverwort. The largest of these are the flowering plants - a grass known as Antarctic hair grass (Deschamsia antarctica), and member of the pink family with a cushion-like growth habit called Antarctic pearlwort (Colobanthus quitensis). Whereas the hair grass benefits from being wind pollinated, the Antarctic pearlwort has had to get creative with its reproductive needs. Instead of relying on pollinators, which simply aren’t present in any abundance on Antarctica, it appears that the pearlwort has shifted over to being entirely self-pollinated. This seems to work for it because if the mother plant is capable of living on Antarctica, so too will its clonal offspring.

By far the dominant plant life on the continent are the mosses. With 100 species known to live on Antarctica, it is hard to make generalizations about their habits other than to say they are pretty tough plants. Most live out their lives among the saturated rocks of the intertidal zones. What we can say about these mosses is that they support a bewildering array of microbial life, from fungi and lichens to protists and tardigrades. Even in this frozen corner of the world, plants form the foundation for all other forms of life.

Antarctic_Pearlwort.jpg
Antarctic pearlwort ( Colobanthus quitensis )

Antarctic pearlwort (Colobanthus quitensis)

The coastal plant communities of Antarctica represent hotbeds of biodiversity for this depauperate continent. They reach their highest densities on the Antarctic Peninsula as well as on coastal islands such as south Orkney Islands and the South Shetland Islands. Here, conditions are just mild enough among the various rocky crevices for germination and growth to occur. Still, life on Antarctica is no cake walk. A short growing season, punishing waves, blistering winds, and trampling by penguins and seals present quite a challenge to Antarctica’s botanical denizens. They are able to live here despite these challenges.

Moss_on_Aitcho_Island.jpg

Still, humans take their toll. The Antarctic Peninsula is experiencing some of the most rapid warming on the planet over the last century. As this region grows warmer and drier each year, plants are responding accordingly. Antarctic mosses along the peninsula are increasingly showing signs of stress. They are starting to prioritize the production of protective pigments in their tissues over growth and reproduction. Moreover, new species of moss are starting to take over. Rapid warming and drying of the Antarctic Peninsula appears to be favoring species that are more desiccation tolerant at the expense of the continents endemic moss species.

Changes in the structure and composition of Antarctica’s moss beds is far from being a scientific curiosity for only bryologists to ponder. It is a symptom of greater changes to come.

Photo Credits: [1] [2] [3] [4] [5] [6]

Further Reading: [1] [2] [3]

Glacier Mice

w1_life_on_ice.jpg

At first glance the surface of a glacier hardly seems hospitable. Cold, barren, and windswept, glaciers appear to be the antithesis of life. However, this assumption is completely completely false. Glaciers are home to an interesting ecosystem of their own, albeit on a smaller scale than we normally give attention to.

From pockets of water on the surface to literal lakes of water sealed away inside, glaciers are home to a myriad microbial life. On some glaciers the life even gets a bit larger. Glaciers are littered with debris. As dust and gravel accumulate on the surface of the ice, they begin to warm ever so slightly more than the frozen water around them. Because of this, they are readily colonized by mosses such as those in the genus Racomitrium.

The biggest challenge to moss colonizers is the fact that glaciers are constantly moving, which anymore today means shrinking. As such, these bits of debris, along with the mosses growing on them, do not sit still as they would in say a forest setting. Instead they roll around. As the moss grows it spreads across the surface of the rock while the ice rotates it around. This causes the moss to grow on top of itself, inevitably forming a ball-like structure affectionately referred to as a "glacier mouse."

300_2012_1205_Fig4_HTML.jpg

Because the moss stays ever so slightly warmer than its immediate surroundings, glacier mice soon find themselves teaming with life. Everything from worms to springtails and even a few water bears call glacier mice home. In a study recently published in Polar Biology, researcher Dr. Steve Coulson found "73 springtails, 200 tardigrades and 1,000 nematodes" thriving in just a single mouse!

The presence of such a diverse community living in these little moss balls brings up an important question - how do these animals find themselves in the glacier mice in the first place? After all, life just outside of the mouse is quite brutal. As it turns out, the answer to this can be chalked up to how the mice form in the first place. As they blow and roll around the the surface of the glacier, they will often bump into one another and even collect in nooks and crannies together. It is believed that as this happens, the organisms living within migrate from mouse to mouse. The picture being painted here is that far from being a sterile environment, glaciers are proving to be yet another habitat where life prospers.

Photo Credit: [1] [2]

Further Reading: [1]

Maples, Epiphytes, and a Canopy Full of Goodies

IMG_0090.jpg

The forests of the Pacific Northwest are known for the grandeur. This region is home to one of the greatest temperate rainforests in the world. A hiker is both dwarfed and enveloped by greenery as soon as they hit the trail. One aspect of these forests that is readily apparent are the carpets of epiphytes that drape limbs and branches all the way up into the canopy. Their arboreal lifestyle is made possible by a combination of mild winters and plenty of precipitation. 

Weare frequently taught that the relationship between trees and their epiphytes are commensal - the epiphytes get a place to live and the trees are no worse for wear. However, there are a handful of trees native to the Pacific Northwest that are changing the way we think about the relationship between these organisms in temperate rainforests.

Though conifers dominate the Pacific Northwest landscape, plenty of broad leaved tree species abound. One of the most easily recognizable is the bigleaf maple (Acer macrophyllum). Both its common and scientific names hint at its most distinguishing feature, its large leaves. Another striking feature of this tree are its epiphyte communities. Indeed, along with the vine maple (A. circinatum), these two tree species carry the greatest epiphyte to shoot biomass ratio in the entire forest. Numerous species of moss, liverworts, lichens, and ferns have been found growing on the bark and branches of these two species.

Acer_macrophyllum_1214.JPG

Epiphyte loads are pretty intense. One study found that the average epiphyte crop of a bigleaf maple weighs around 78 lbs. (35.5 Kg). That is a lot of biomass living in the canopy! The trees seem just fine despite all of that extra weight. In fact, the relationship between bigleaf and vine maples and their epiphyte communities run far deeper than commensalism. Evidence accumulated over the last few decades has revealed that these maples are benefiting greatly from their epiphytic adornments.

Rainforests, both tropical and temperate, generally grow on poor soils. Lots of rain and plenty of biodiversity means that soils are quickly leached of valuable nutrients. Any boost a plant can get from its environment will have serious benefits for growth and survival. This is where the epiphytes come in. The richly textured mix of epiphytic plants greatly increase the surface area of any branch they live on. And all of that added surface area equates to more nooks and crannies for water and dust to get caught and accumulate.

When researchers investigated just how much of a nutrient load gets incorporated into these epiphyte communities, the results painted quite an impressive picture. On a single bigleaf maple, epiphyte leaf biomass was 4 times that of the host tree despite comprising less than 2% of the tree's above ground weight. All of that biomass equates to a massive canopy nutrient pool rich in nitrogen, phosphorus, potassium, calcium, magnesium, and sodium. Much of these nutrients arrive in the form of dust-sized soil particles blowing around on the breeze. What's more, epiphytes act like sponges, soaking up and holding onto precious water well into the dry summer months.

Now its reasonable to think that nutrients and water tied up in epiphyte biomass would be unavailable to trees. Indeed, for many species, epiphytes may slow the rate at which nutrients fall to and enter into the soil. However, trees like bigleaf and vine maples appear to be tapping into these nutrient and water-rich epiphyte mats.

A subcanopy of vine maple ( Acer circinatum ) draped in epiphytes.

A subcanopy of vine maple (Acer circinatum) draped in epiphytes.

Both bigleaf and vine maples (as well as a handful of other tree species) are capable of producing canopy roots. Wherever the epiphyte load is thick enough, bundles of cells just under the bark awaken and begin growing roots. This is a common phenomenon in the tropics, however, the canopy roots of these temperate trees differ in that they are indistinguishable in form and function from subterranean roots.

Canopy roots significantly increase the amount of foraging an individual tree can do for precious water and nutrients. Additionally, it has been found that canopy roots of the bigleaf maple even go as far as to partner with mycorrhizal fungi, thus unlocking even more potential for nutrient and water gain. In the absence of soil nutrient and water pools, a small handful of trees in the Pacific Northwest have unlocked a massive pool of nutrients located above us in the canopy. Amazingly, it has been estimated that mature bigleaf and vine maples with well developed epiphyte communities may actually gain a substantial fraction of their water and nutrient needs via their canopy roots.

 

Photo Credits: [1] [2]

Further Reading: [1] [2] [3] [4] [5]

 

Growing Camouflage

A garden on the back of a weevil living a humid Chilean rainforest.

A garden on the back of a weevil living a humid Chilean rainforest.

Lots of us will be familiar with organisms like decorator crabs that utilize bits and pieces of their environment, especially living sea anemones, as a form of camouflage and protection. Examples of terrestrial insects attaching bits and pieces of lichens to their body are not unheard of either. However, there are at least two groups of arthropods that take their camouflage to a whole new level by actively growing miniature gardens on their bodies.

Little is known about these garden-growing arthropods. To date, these miniature gardens have only been reported on a few species of weevil in the genus Gymnopholus as well as a species of millipede called Psammodesmus bryophorus. Coined epizoic symbiosis, it is thought that these gardens serve as a form of protection by camouflaging the gardeners against the backdrop of their environment.

Bryophytes on a  Psammodesmus bryophorus  male.

Bryophytes on a Psammodesmus bryophorus male.

Indeed, both groups of arthropods frequent exposed areas. What is most remarkable about this relationship is that these plants were not placed on the carapace from elsewhere in the environment. Instead, they have been actively growing there from the beginning. Closer inspection of the cuticle of these arthropods reveals unique structural adaptations like pits and hairs that provide favorable microclimates for spores to germinate and grow.

The plant communities largely consist of mosses and liverworts. At least 5 different liverwort families are represented and at least one family of moss. Even more remarkable is the fact that even these small botanical communities are enough to support a miniature ecosystem of their own. Researchers have found numerous algae such as diatoms, lichens, and a variety of fungi growing amidst the mosses and liverworts. These in turn support small communities of mites. It appears that an entire unknown ecosystem lives on the backs of these mysterious arthropods.

FIGURE 39. Elytral base of Gymnopholus (Niphetoscapha) nitidus with exudates. FIGURES 40a–b. Gymnopholus (Niphetoscapha) inexspectatus sp. n., live specimen with incrustrations of algae and lichens; photographs M. Wild, Mokndoma.  [SOURCE]

FIGURE 39. Elytral base of Gymnopholus (Niphetoscapha) nitidus with exudates. FIGURES 40a–b. Gymnopholus (Niphetoscapha) inexspectatus sp. n., live specimen with incrustrations of algae and lichens; photographs M. Wild, Mokndoma. [SOURCE]

There is still much to be learned about this symbiotic relationship. Although camouflage is the leading hypothesis, no work has been done to actually investigate the benefits these arthropods receive from actively growing these miniature gardens on their backs. Mysteries still abound. For instance, in the case of the millipede, gardens are found more frequently on the backs of males than on the backs of females. Could it be that males spend more time searching their environment and thus benefit from the added camouflage? Only further research will tell.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3]