Trees In Spring

Spring is a wonderful time to observe trees. After a long, dreary winter they burst into action. For many species, spring is the time for reproduction.

Species in this episode:

-Serviceberry (Amelanchier sp.)

-Norway maple (Acer platanoides)

-Eastern redcedar (Juniperus virginiana)

-Sugar maple (Acer saccharum)

-Saucer magnolia (Magnolia x soulangeana)

Producer, Writer, Creator, Host: Matt Candeias (

Producer, Editor, Camera: Grant Czadzeck (

Floral Mucilage

Spend enough time around various Bromeliads and you will undoubtedly notice that some species have a rather gooey inflorescence. Indeed, floral mucilage is a well documented phenomenon within this family, with something like 30 species known to exhibit this trait. It is an odd thing to experience to say the least.

The goo takes on an interesting consistency. It reminds me a bit of finding frog spawn as a kid. Their brightly colored flowers erupt from this gooey coating upon maturity and the seeds of some species actually develop within the slimy coating. Needless to say, the presence of mucilage in these genera has generated some attention. Why do these plants do this?

floral mucilage.JPG

Some have suggested that it is a type of reward for visiting pollinators. Analysis of the goo revealed that it is 99% water and 1% carbohydrate matrix with no detectable sugars or any other biologically useful compounds. As such, it probably doesn't do much in the way of attracting or rewarding flower visitors. Another hypothesis is that it could offer antimicrobial properties. Bromeliads are most often found in warm, humid climates where fungi and bacteria can really do a number. Again, no antimicrobial compounds were discovered nor did the mucilage show any sort of growth inhibition when placed in bacterial cultures.

It is far more likely that the mucilage offers protection from hungry herbivores. Flowers are everything to a flowering plant. They are, after all, the sexual organs. They take a lot of energy to produce and are often brightly colored, making them prime targets for a meal. Anything that protects the flowers during development would be a boon for any species. Indeed, it appears that the mucilage acts as a physical barrier, protecting the developing flowers and seeds. One study found that flowers protected by mucilage received significantly less damage from weevils than those without mucilage.

The mucilage could also provide another benefit to Bromeliads. Because these plants rely on water stored in the middle of their rosette (the tank, as it is sometimes called), some species may also gain a nutritional benefit as well. Bromeliad flowers emerge from this central tank so anything that gets stuck in the mucilage may eventually end up decomposing in the water. Since nutrients are absorbed along with the water, this could be an added meal for the plant. To date, this has not been confirmed. More work is needed before we can say for sure.

Photo Credit: [1] [2]

Further Reading: [1] [2] [3] [4]


Closed on Account of Weather

Alpine and tundra zones are harsh habitats for any organism. Favorable conditions are fleeting and nasty weather can crop up in the blink of an eye. Whereas animals in these habitats can take cover, plants don't have that luxury. They are stuck in place and have to deal with whatever comes their way. Despite these challenges, myriad plant species have adapted to these conditions and thrive where other plants would perish. The intense selection pressures of these habitats have led to some fascinating evolutionary adaptations, especially when it comes to reproduction.

Take, for instance, the Arctic gentian (Gentianodes algida). This lovely plant can be found growing in alpine and tundra habitats in both North America and Asia. Like most plants of these habitats, the Arctic gentian has a low growth habit, forming a dense cluster of fleshy, narrow leaves that hug the ground. This protects the plant from blustering winds and extreme cold. From late July until early September, when the short growing season is nearly over, this wonderful plant comes into bloom. 

Clusters of white and blue speckled flowers are borne on short stems and, unlike other angiosperms that readily self-pollinate under harsh conditions, the Arctic gentian requires outcrossing to set seed. This can be troublesome. As you can imagine, pollinators can be in short supply in these habitats. What's more, with conditions changing on a dime, the flowers must be able to cope with whatever comes their way. The Arctic gentian is not helpless though. It has an interesting adaptation to these habitats and it involves movement.

Only a handful of plant species are known for their ability to move their various organs with relative rapidity. This gentian probably doesn't make that list very often. However, it probably should as its flowers are capable of responding to changes in weather by closing up shop. It is not alone in this behavior. Plenty of plant species will close their flowers on cold, dreary days. What is so special about the Arctic gentian is that it seems especially attuned to the weather. Within minutes of an incoming thunderstorm (a daily occurrence in the Rockies, for example) the Arctic gentian will close up its flowers. This is done via changes in turgor pressure within the cells. But what is the signal that cues this gentian in that a storm is fast approaching?

Researchers have investigated multiple stimuli in search of the answer. Plants don't seem to respond to changes in sunlight, wind, or humidity. Instead, temperature seemed to be the only signal capable of eliciting this response. When temperatures suddenly drop, the flowers will begin to close. Only when the temperature begins to rise will the flowers reopen. These movements are quite rapid too. Flowers will close completely within 6 - 10 minutes of a rapid decease in temperature. The reverse takes a bit longer, with most flowers needing 25 - 40 minutes to reopen.

So, why does the plant go through the trouble of closing up shop? It all has to do with sexual reproduction in these harsh conditions. Because this species doesn't self, pollen is at a premium. The plant simply can't afford the risk of rain washing it all away. The tightly closed flowers prevent that from happening. Also, wet flowers have been shown to discourage pollinators, even when favorable weather returns. Aside from interfering with pollen, rain also dilutes nectar, reducing its energy content and thus reducing the reward for any bee that would potentially visit the flower.

Being able to rapidly respond in changes in weather is important in these volatile habitats. Plants must be able to cope otherwise they risk extirpation. By closing up its flowers during inclement weather, the Arctic gentian is able to protect its vital reproductive resources.

Photo Credits: [1]

Further Reading: [1]


Mighty Magnolias

Magnolias are one of those trees that even the non-botanically minded among us will easily recognize. They are one of the more popular plant groups grown as ornamentals and their symbolism throughout human history is quite interesting. But, for all this attention, few may realize how special magnolias really are. Did you know they they are one of the most ancient flowering plant lineages in existence?

Magnolias first came on to the scene somewhere around 95 million years ago. Although they are not representative of what the earliest flowering plants may have looked like, they do offer us some interesting insights into the evolution of flowers. To start with, the flower bud is enclosed in bracts (modified leaves) instead of more differentiated sepals. The "petals" themselves are not actually petals but tepals, which are also undifferentiated. The most striking aspect of magnolia flower morphology is in the actual reproductive structures themselves.

Magnolias evolved before there were bees. Because of this, the basic structure that makes them unique was in place long before bees could work as a selective pressure in pollination. Beetles are the real pollinators of magnolia flowers. The flowers have a hardened carpel to avoid damage by their gnawing mandibles as the feed. The beetles are after the protein-rich pollen. Because the beetles are interesting in pollen and pollen alone, the flowers mature in a way that ensures cross pollination. The male parts mature first and offer said pollen. The female parts of the flower are second to mature. They produce no reward for the beetles but are instead believed to mimic the male parts, ensuring that the beetles will spend some time exploring and thus effectively pollinating the flowers.

It is pretty neat to think that you don't necessarily have to track down a dawn redwood or a gingko to see a plant that has survived major extinction events. You can find magnolias very close to home with a keen eye. Looking at one, knowing that this is a piece of biology that has worked for millennia, is quite astounding in my opinion.

Further Reading: [1] [2] [3] [4]

Staying Warm: An Alpine Plant Approach to Reproduction

Things are beginning to cool down throughout the northern hemisphere. As winter approaches, most plant species begin to enter their dormancy period. Very few plants risk wasting their reproductive efforts in the chill of late fall, having gotten most of it out of the way during the warm summer months. This is easy enough for low elevation (and low latitude) plants but what about species living in the high arctic or alpine habitats. Such habitats are faced with cold, harsh conditions year round. How do plants living in these zones deal with reproduction?

These limitations are overcome via physiology. For starters, plants living in such extreme habitats often self pollinate. Insects and other pollinators are too few and far between to rely solely upon them as a means of reproduction. Also, the flowers of most cold weather plants are heliocentric. This means that, as the sun moves across the sky, the flowers track its path so that they are constantly perpendicular to its rays. This maintains maximum exposure to this precious heat source. 

Additionally, many arctic and alpine plants have parabolically shaped flowers. This amplifies the incoming radiation being absorbed by the flower. Experiments have shown that flowers that have been shaded from the heat of the sun had a dismal seed set of only 8% whereas plants exposed to the sun had an elevated seed set of 60%. 

For plants in these habitats, its all about persistence. Low reproductive rates are often offset by extremes in longevity. This is one of the many reasons why hikers must remember to tread lightly in these habitats. Damages incurred by even a single careless hiker can take decades, if not centuries, to recover. 

Photo Credit: [1]

Further Reading: [1]

Color Changing Asters

Fall is here and the asters are out in force. Their floral displays are some of the last we will see before the first fall frost takes its toll. Their beauty is something of legend and I could sit in a field and stare at them for hours. In doing so, an interesting pattern becomes apparent. Have you ever noticed that the disc flowers of the many aster species gradually turn from yellow to red? Whereas this certainly correlates with age, there must be some sort of evolutionary reason for this.

Indeed, there is. If you sat and watched as bees hurriedly dashed from plant to plant, you may notice that they seem to prefer flowers with yellow discs over those with red. The plot thickens. What about these different colored discs makes them more or less appealing to bees desperately in need of fuel? The answer is pollen.

A closer observation would reveal that yellow disks contain more pollen than those with red discs. Of course, this does relate to age. Flowers with red discs are older and have already had most of their pollen removed. In this way, the color change seems to be signaling that the older flowers are not worth visiting. Certainly the bees notice this. But why go through the trouble of keeping spent flowers? Why not speed up senescence and pour that extra energy into seed production?

Well, its all about cues. Bees being the epitome of search image foragers are more likely to visit plants with larger floral displays. By retaining these old, spent flowers, the asters are maintaining a larger sign post that ensures continued pollinator visitation and thus increases their chances of cross pollination. The bees simply learn over time to ignore the red disc flowers once they have landed. In this way, they maximize their benefit as well.

Further Reading: [1]

What is the Most Common Flower Color?

Have you ever wondered what the most common flower color is? If one were to tally up all the known flowering plants, what color or colors would come out on top? I have pondered this time and again and I for some reason have a bias towards yellow. I think it is a symptom of where I live. In fact, I think flower color in general can, in part, be considered a function of geographic location. Each region of the world has its own specific pollinators driving selection for flower color. I decided to finally try and track down an answer to this question. 

The truth of the matter is, no one really knows. There is simply no database out there that fully characterizes all the colors flowers can be, let alone rank them by abundance. When you really think about it in the context of real world examples, it makes sense that this would be a daunting task. The first question becomes "how do we define the color of a flower?" This may seem silly but think about it. How many times has a field guide said one thing and reality says another? This is the main reason I don't use Peterson's Field Guide to Wildflowers. Colors vary from genus to genus and heck, they even vary within a species. A plant growing in one area may look one way while the same species growing in another area can look totally different. Far from being simply a function of genes, flower color can be just as dependent on growing conditions. 

Also, what one botanist calls red may not be what everyone else calls red. Barring a persons ability to see all of the visible light spectrum, there is no set standard, for flowers at least, as to where we draw the lines between colors. What we end up with at the end of the day are lumped packages of color pertaining to a chunk of the spectrum visible to us. It is actually an easier question to ask "what is the rarest flower color?" To that, most botanists will probably say black. To the best of my knowledge, there is only one species of plant in the world with truly black flowers. The rest are more accurately deep shades of red or purple. True blue is another rare color among flowers for the same reason

After a few hours (more than I should have dedicated to the cause) I came up with one satisfying answer and to sum it all up, I will put it this way: We simply have no idea what the most common flower color is in the world but it's probably green. We tend to only pay attention to the showiest flowers. Big or small, we like bright colors and we like weird colors. All the rest just get glazed over. In reality, many plant species, especially trees, produce small, non-descript green flowers. For this reason I would say that green is a safe default until someone or a group of someones puts in the time that would be needed to put any meaningful numbers to this inquiry.

Photo Credit: Mor (

Host Coercion

Moving from one host to another can be difficult for parasites, especially for those specializing on plants. Because they rely on other organisms for their survival, they have evolved some amazing strategies at getting what they need. A recent study published in PLOS Biology has shed some light on one interesting strategy.

Phytoplasma are bacterial parasites of a variety of plant species. In order to get from one host to another, these bacteria utilize insect hosts. How they do this is quite incredible. These bacteria produce specialized proteins that have some strange effects on plant tissues.

The proteins actually sterilize the host plant. They do this by interfering with the proteins responsible for flower development. Instead of producing normal flowers, the plants produce mutated leaf-like structures. You can see an example of a healthy plant on the left and an infected one on the right. So, why does the bacteria do cause such mutations?

This is where the insects enter the picture. Researchers found that infected plants that produced these mutated leaf-like structures were more attractive to leaf hoppers. The leaf hoppers readily feed and reproduce on these infected plants at a higher rate than they do healthy plants. In feeding, the leaf hoppers inevitably suck up bacteria in the sap.

When the leaf hoppers go on to feed on healthy plants, some of the bacteria get transferred in their saliva, thus completing the parasitic lifecycle. This is what parasitologists call "host coercion." The parasite, in this case phytoplasma bacteria, alter their host in some manner that increases the fitness of the parasite. This is one of the first examples in which researchers have been able to identify the exact mechanism by which a parasite makes this happen.

Photo Credit: John Innes Centre (

Further Reading:

American Witch Hazel

With October nearly over, temperatures are starting to dip. The asters and goldenrods have traded their floral displays for their wind-dispersed seeds that take advantage of the fall breeze. Alas, floral displays in the northern hemisphere are nearly over. There is one major show left for those living in eastern North America. From October through November (and even into December in some regions) one species of understory shrub puts forth a display reminiscent of a firework extravaganza if the fireworks only came in yellow.

I am, of course, talking about American witch hazel (Hamamelis virginiana). This wonderful shade-loving shrub goes largely unnoticed throughout the summer. Come fall, however, it makes up for its subtle appearance by offering up some of the last flowers of the season. Seemingly overnight their branches become adorned with unique little flowers whose petals shoot out like four little party streamers. They somehow manage to look both modest and showy all at once.

It may seem strange for any plant to be flowering so late. What possible advantage could this entail? Some experts believe that late flowering evolved as a way for American witch hazel to avoid competition with other flowering plants. Indeed, it certainly attracts its fair share of pollinators in desperate search of a late season meal. Flies and bees make up a majority of pollinator visits. It could also be possible that American witch hazel flowers so late to avoid hybridizing with its spring-flowering cousin, the Ozark witch hazel (Hamamelis vernalis). Regardless of its "intentions," this fall flowering strategy comes at a cost.

Despite garnishing a fair amount of pollinator attention, American witch hazel doesn't have enough time following pollination to produce fruit before winter hits. As such, fertilization of the ovaries is delayed until May the following year. The fruits, which are contained in woody capsules, spend the entire growing season maturing into viable propagules. Once mature, the seed capsules begin to dry until they become so taught that the capsule bursts. If you are lucky and attentive enough, you may be able to hear a small snap as the seeds are forcibly ejected from the capsule.

What's more, fruit set in this species is rather low. Analyses of over 40,000 witch hazel flowers showed that less than 1% produced viable seeds. Despite all of this, American witch hazel is nonetheless a successful species in eastern North American forests. It is proof that evolution need not be all or nothing. Any slight advantage is still an advantage. This hardy shrub is, at the end of the day, a survivor.

Further Reading:

Colorful Claytonia

If you live where spring beauty, specifically Claytonia virginica, is native, then you may have noticed great variations in flower color. We all know the influence pollinators can have on flower shape and color but how do we explain populations with such a spectrum?

Like me you might be thinking that it is related to its growing conditions. Well, a research paper by Frank M. Frey out of Indiana University would suggest otherwise. He chalks it all up to opposing natural selection from herbivores and pathogens.

Say what now? In a 2 year study, Frey has made some amazing discoveries. First, he made sure that Claytonia flower color is not a result of soil pH or anything like that by growing a ton of them in different conditions. He found that flower color is indeed genetic and is controlled by a couple different compounds. Crimson coloring comes from a compound called "cyanidin" and white colors comes from two flavonols, "guercetin" and "kaempferol". Frey then used spectrometry to analyze flower colors throughout the population and found 4 distinct color morphs ranging from all white to mostly crimson.

As it turns out, the flavonol compounds have pleiotropic effects in Claytonia. While they do produce white pigments, they also help defend the plants against herbivory and pathogens. Frey used a multitude of different analytical methods to assess overall fitness of each color morph and his results are jaw-droppingly cool to say the least.

Fitness of Claytonia was measured as total fruit production and total seed set. Because Claytonia needs a pollinator to visit the plant in order to produce fruit and set seed, reproduction is directly linked to pollinator preference. His research found that pollinators, which for Claytonia are solitary bees, do, in fact, prefer crimson color morphs. This helps to explain the greater number of crimson colored flowers in any given area because the more pollinator visits, the higher overall fitness for that plant. What it does not explain though, is why white morphs exist in the population at all.

As stated above, the flavonols that produce white pigmentation also beef up the plants defenses. Frey found that white colored flowers experienced significantly less predation than crimson flowers. Herbivory has serious consequences for Claytonia and plants that receive high levels of herbivore damage are far more likely to die. Because of this, white morphs, even with significantly less reproductive fitness, are able to maintain themselves in any given population. Wow!

If you're at all like me then you may need to pick you jaw up off the ground at this point. But wait! It gets cooler.... In areas where other white flowering plants like Stellaria pubera abound, white Claytonia morphs are even more rare. Why is this exactly? Well, Frey explains that this is due to a push towards a more pollinator mediated selective pressure. In areas where many plants share the same flower color, it pays to be different. This causes a selective pressure in these Claytonia populations to favor even more crimson color morphs.

Isn't evolution amazing?

Further Reading:



There is something about flowers with reflexed petals that I find quite appealing. That is probably why I have always had a soft spot for Cyclamen. These interesting little plants are quite popular as horticultural specimens due to their relative hardiness. A lush individual can really brighten up a room. As with any common house plant, I am always eager to learn about their ecology. A quick search for Cyclamen in the literature turns up some interesting facts. 


Cyclamen are native to Europe, the Mediterranean Basin, Iran, with a single species native to Somalia. There are approximately 23 different species and a decent amount of revisions regarding where they fit taxonomically. The latest that I am aware of has placed this genus in a subfamily within Primulaceae. Though they seem to grow well in a lot of different habitats, most species appear to be at home growing along mountainsides in stable scree slopes. Each plant grows from a true tuber, which allows them energy stores for re-sprouting after a dry season dormancy. 

The flowers are adapted for buzz pollination, not unlike tomatoes and their relatives. However, some researchers have noted that for some species, buzz pollination is a rare event. Instead, many non-specialist pollinators are the most frequent visitors. Some have taken this as a sign that certain species of Cyclamen have lost their original pollinator for an unknown reason. 

Throughout their range, many species have been severely depleted due to over-collection for the horticulture trade. As such, a handful of species are considered quite endangered. Luckily, there are many organizations out there that are cultivating these species on a large scale to take pressure off of wild populations. There may be hope after all. However, some climate change projections put other species at risk of loosing the habitats that sustain them. This is especially true for montane species. Only time will tell. 


Photo Credit: Wikimedia Commons

Further Reading:

Bladderwort Bliss

The bladderworts (genus Utricularia) are already pretty awesome when you consider their carnivorous habits. However, to lay eyes on the bewildering variety of shapes, sizes, and colors of their blooms brings about a whole new appreciation for these marvels of evolution.

Photo Credits: Boaz Ng (, Tim Waters (, David-Emil Wickström (, Steve Garvie (, eyeweed (, B Mlry (, satish nikam (, Kevin Thiele (

Sweet Nectar


Plants produce some serious chemical cocktails. Any compound that a plant produces that isn't involved in growth or reproduction is coined a secondary metabolite. These compounds often function as herbivore deterrents. We humans are well aware of this fact and have been utilizing plants as medicine for millennia. Though the human animal may appear unique in this aspect, self-medicating has nonetheless been discovered in many other animals. Everything from monkeys to birds and even elephants seek out specific plants for things like parasite control and birthing. A study published in 2015 suggests that using plants as medication may even extend to insects. 

It has been documented that for a multitude of plant lineages, secondary metabolites are not restricted to vegetative structures. Many species produce secondary metabolites in their nectar. One interesting example of this can be found in coffee trees (Coffea sp.). These plants produce caffeinated nectar that has shown to keep bees coming back for more, not unlike we humans frequent our coffee pots. Plenty of other plants are doing this as well. Everything from amino acids, alkaloids, phenolics, glycosides, terpenoids, and even microRNA have turned up in the nectar of different plant species.

Researchers wanted to know if these chemicals may be benefiting pollinators. By isolating the different compounds, researchers found that bumblebees drinking from these flowers had drastically reduced parasite loads, specifically the gut parasite Crithidia. About half of the compounds tested were implicated in reducing parasite load but one group in particular stood out - the tobacco alkaloids. 

Alkaloids such anabasine are not limited to tobacco plants. They can be found in the nectar of trees like the basswoods (Tilia sp.) and forbs like the turtle heads (Chelone sp.). Bees that drank nectar containing these alkaloids saw parasite reductions of upwards of 80%. However, like any viable medicine, there were side effects. The eggs of bees that drank these compounds took considerably longer to develop and hatch. This cost may be well worth the lower parasite transmission rates and likely do not pose considerable selective pressures.

Whether or not bees are specifically targeting these plants for their anti-parasite properties remains to be seen. More recent work has found that we must be tentative in our conclusions at this point. Tests on other nectar compounds have shown no benefit to pollinators. Either way, these findings have opened up a whole new door into the interactions between plants and their pollinators. 

Further Reading: [1]  [2]



There is something very special about old plants. They offer us a way of appreciating a timescale that we can never fully understand. I am especially fond of finding people who have had house plants in their family for generations. I grew up with a few that had already been around for decades before I was born. Here is a wonderful example of what I am talking about. This Acronia titan orchid has been blooming for years and has acquired a wonderful little moss patch in the crux of its leaf. Out of that moss grows a fern.

This photo comes to us courtesy of Kevin Holcomb. You can find him on instagram via @orchid_beard

Amber Fossils of Grain


In what may be one of the most interesting fossil discoveries in recent years, scientists from Oregon State University have described the earliest fossil evidence of grasses. Encased in 100 million year old amber this ancient grass spikelet suggests grasses were already around in the early to mid Cretaceous period. This is some 20 to 30 million years earlier than previous estimates for grass evolution. If that isn't cool enough, the grass appears to have been infected by a fungus related to ergot (the darker portion at the top), showing that this parasitism may be as old as grasses themselves. 

We humans have a long history with ergot's fondness for grasses. It is best known for producing the chemical precursors of LSD (as well as many other useful drugs) and has been implicated in some major historical events throughout our short time on this planet. However, suggesting that dinosaurs were getting high off the stuff is pushing it. Ergot likely evolved its chemical cocktail to deter herbivores from eating the grasses that it parasitizes. It has a bitter taste and cattle are said to avoid grasses that have been infected by it. It is quite possible that dinosaurs probably did the same thing. 

Either way, this finding represents a major milestone in the understanding of one of the most important plant families on the planet. Following the mass extinction at the end of the Cretaceous, grasses quickly rose to dominate roughly 20% of global vegetation. This little piece of amber now suggests that dinosaurs and their neighbors likely had a role in shaping this plant family. 

Photo Credit: Oregon State University

Further Reading: [1]

An Abominable Mystery


We all love flowers but for all the attention we pay them, their origin remains elusive. Darwin called their sudden appearance in the fossil record an “abominable mystery.” Since Darwin's time, we have been able to clarify that picture a little bit. Even so, our understanding of the origin of the angiosperm lineage is dubious at best. When and why did flowers evolve?

For millions of years the land was dominated first by ferns and their allies and then by gymnosperms like cycads and gingkos. It was not until the Cretaceous that angiosperms began to rise to their current place as the dominant and most diverse group of plants. Their sudden appearance on the scene has been largely shrouded in mystery. There is scant fossil evidence to illustrate the early evolutionary steps in this development of flowers. Many paleobotanists believed that flowers had their origin in shrub-like ancestors of gymnosperms. Others felt that the origin of flowers belonged with the seed ferns (

Around 2001 a fossil discovery from Yixian Formation, Liaoning, China was believed to have changed all of that. A researcher by the name of Ge Sun had stumbled upon a very primitive looking fossil plant. To his surprise, the reproductive structures seemed to show stamens in pairs below carpels and a lack of petals and sepals. The formation in which the fossil was found dated back to the Jurassic period. Could this represent the remains of the earliest flowers?

The fossil has been coined Archaefructus and since its discovery at least two species have been identified. Archaefructus was an aquatic plant, likely living on the edge of freshwater lakes. These fossils (as one would expect) are quite contentious. Some argue that it is more derived than would be expected from the first flower. Recently it has been suggested that Archaefructus is a sister lineage to early flowering plants, not unlike Nymphaeales or Amborella living today. 

What Archaefructus does suggest is that flowers had their origin much earlier than the Cretaceous. Other discoveries from the same formation (ie. Archaeamphora longicervia) suggest that flowering plants were already diversifying at this time. So, if this is the case, when did flowers appear on the scene? Far from the smoking gun that a fossilized flower would represent, researchers are nonetheless finding tantalizing fossil evidence that places the origin of flowering plants all the way back to the Triassic. 

By examining Triassic microfossils, some researchers believe they have found fossilized pollen grains that are distinctly angiosperm in origin. I won't go into it here but extant examples show a major distinction between pollen from gymnosperms and pollen from angiosperms. If this is true, flowers may be way older than ever expected. For now, the jury is still out on this one. 

Flowers evolved for sex. We associate animals like bees, bats, and birds with flowers today but most of these lineages came much later in the game. Exactly what was around pollinating early flowers remains a bit of a mystery as well. Were the earliest flowers wind pollinated or was there some insect or even reptile that served the selection pressure necessary for their evolution? Only time and more fossil discoveries will tell. 

Photo Credit: Shizhao (Wikimedia Commons)

Further Reading:

Cast In Iron


When it comes to hardy houseplants, few species can hold a candle to the Aspidistra. With their ability to tolerate dismal lighting conditions and less than stellar air quality, it is no wonder the this genus was a favorite among the middle class during the Victorian era. They were so common during that time period that George Orwell himself used them as a metaphor in his 1936 novel "Keep the Aspidistra Flying." Today they are nothing more than space fillers. Commonly known as "cast iron plants," they are a natural step up from silken foliage in waiting rooms and cubicles. They can virtually be ignored and still maintain their composure. For a houseplant, this is pretty incredible. However, this genus did not originate in the home. It is just as wild as any other plant out there. What are the Aspidistra and where do they come from?


With their long, strap-like leaves that seem to pop out of the dirt at random, it is not readily apparent that these plants belong to the same family as asparagus - Asparagaceae. Since the 1980's, botanists have described upwards of 93 different species within the genus. They are native to eastern Asia and hit their peak diversity in China and Vietnam. Many species within this genus are endemic to these areas. 


Aspidistra as a whole are understory species, growing on the ground underneath dense canopies of trees and shrubs. This is why they can adapt so well to the low light conditions of homes and offices. Though they are mostly tropical in nature, Aspidistra have been known to cope with temperatures as low as −5 °C (23 °F). Despite their leafy appearance, Aspidistra have surprisingly beautiful flowers. You just have to know where to look. 


Flowers are produced at the base of the plant. They are often covered by litter and soil. Despite their cryptic nature, they are nonetheless incredibly beautiful and complex. The flowers are spider-like with a large flattened stigma. They are also the key to identifying different species. Their pollinators are thought to consist mostly of flies, beetles, and the occasional fungus gnat. There is some evidence that some species of Aspidistra are even pollinated by amphipods in the soil. If this is true, it is surely one of the most unique pollinator syndromes ever discovered. 

So, there you have it. One of the most commonly kept and ignored houseplants just happens to be quite interesting. Every plant has an evolutionary and ecological history that has shaped its kind over millennia. It just goes to show you that even the most common houseplants have a story to tell. Think about that next time you come across these growing in a stuffy waiting room. 


Photo Credit: justinleif (, scott.zona (, Phillip Merritt (, Jon T. Lindstrom (, and manicbotanic (

Further Reading: [1] [2] [3] [4] [5] [6]