Orchid Dormancy Mediated by Fungi

North America's terrestrial orchids seem to have mastered the disappearing act. When stressed, these plants can enter into a vegetative dormancy, existing entirely underground for years until the right conditions return for them to grow and bloom. Cryptic dormancy periods like this can make assessing populations quite difficult. Orchids that were happy and flowering one year can be gone the next... and the next... and the next...

How and why this dormancy is triggered has confused ecologists and botanists alike. Certainly stress is a factor but what else triggers the plant into going dormant? According to a recent paper published in the American Journal of Botany, the answer is fungal.

Orchids are the poster children for mycorrhizal symbioses. Every aspect of an orchid's life is dependent on these fungal interactions. Despite our knowledge of the importance of mycorrhizal presence in orchid biology, no one had looked at how the abundance of mycorrhizal fungi influenced the life history of these charismatic plants until now.

By observing the presence and abundance of a family of orchid associated fungi known as Russulaceae, researchers found that the abundance of mycorrhizal fungi in the environment is directly related to whether or not an orchid will emerge. The team focused on a species of orchid known commonly as the small whorled pogonia (Isotria medeoloides). Populations of this federally threatened orchid are quite variable and assessing their numbers is difficult.

The team found that the abundance of mycorrhizal fungi is not only related to prior emergence of these plants but could also be used as a predictor of future emergence. This has major implications for orchid conservation overall. It's not enough to simply protect orchids, we must also protect the fungal communities they associate with.

Research like this highlights the need for a holistic habitat approach to conservation issues. So many species are partners in symbiotic relationships and we simply can't value one partner over the other. If conditions change to the point that they no longer favor the mycorrhizal partner, it stands to reason that it would only be a matter of years before the orchids disappeared for good.

Photo Credit: NC Orchid

Further Reading: [1]

Green Islands

Autumn is here and all across the northern hemisphere deciduous trees are putting on a show unlike anything else in the natural world. The range of colors are spectacular both from afar and up close. If you're like me then every single leaf is worth investigation. The trees are shedding their leaves in preparation for dormancy. The leaves aren't dying outright. Instead, the trees are reabsorbing the chemicals involved in photosynthesis as a way of getting back some of the energy investment that went in to producing them in the first place. 

If you look closely at some leaves, however, you may notice green spots in an otherwise senescent leaf. Why is it that certain parts of these leaves are still photosynthetically active despite the rest of the photosynthetic machinery shutting down around them? The answer to this question is way cooler than I ever expected. 

These "green islands" as they are called are almost always associated with an insect. If you look closely towards the base of these spots you will usually find a tiny leaf mining larvae of a moth busy munching away at the remaining photosynthetic tissue. The most obvious conclusion at this point would be to say that the moth larvae are the cause of the green islands. However, it is not that simple. 

When researchers raised the moth larvae under sterile conditions, they did not produce the green island effect. This proved to be a bit of a conundrum. Why would this happen in the wild but not under sterile conditions in a lab? The answer is bacteria. 

It would appear that the moth larvae have a symbiotic relationship with bacteria living on their bodies. These bacteria interact with the tissues of the leaf and alter the production of cytokinins. In the leaf, cytokinins inhibit leaf senescence. When the plant switches into dormancy mode, cytokinin production is shut down. The bacteria, however, actually ramp up cytokinin production throughout the tissues surrounding the larva. The result of which is a small region or "island" of tissue with prolonged photosynthetic life. 

Because of this, the larvae are able to go on feeding well into the fall when food would otherwise become nonexistent. By harboring these bacteria, the moths are able to get more out of each seasons reproductive efforts instead of simply stopping once fall hits. This is the first ever evidence of insect bacterial endosymbionts have been shown to manipulate plant physiology, though it most certainly will not be the last. 

I would like to thank Charley Eiseman for the use of this photo as well as inspiring this post. Charley is the man behind one of my all time favorite blogs Bug Tracks (https://bugtracks.wordpress.com/) so make sure to visit and like Northern Naturalists.

Further Reading:
https://bugtracks.wordpress.com/2014/01/29/green-islands/

https://bugtracks.wordpress.com/2015/10/13/green-islands-part-2-and-another-mystery-moth/

http://rspb.royalsocietypublishing.org/content/early/2010/03/24/rspb.2010.0214.short

http://onlinelibrary.wiley.com/doi/10.1002/ece3.1580/epdf

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908980/