The Extraordinary Catasetum Orchids

Male  Catasetum osculatum

Male Catasetum osculatum

Orchids, in general, have perfect flowers in that they contain both male and female organs. However, in a family this large, exceptions to the rules are always around the corner. Take, for instance, orchids in the genus Catasetum. With something like 166 described species, this genus is interesting in that individual plants produce either male or female flowers. What's more, the floral morphology of the individual sexes are so distinctly different from one another that some were originally described as distinct species. 

Female  Catasetum osculatum

Female Catasetum osculatum

In fact, it was Charles Darwin himself that first worked out that plants of the different sexes were indeed the same species. The genus Catasetum enthralled Darwin and he was able to procure many specimens from his friends for study. Resolving the distinct floral morphology wasn't his only contribution to our understanding of these orchids, he also described their unique pollination mechanism. The details of this process are so bizarre that Darwin was actually ridiculed by some scientists of the time. Yet again, Darwin was right. 

Catasetum longifolium

Catasetum longifolium

If having individual male and female plants wasn't strange enough for these orchids, the mechanism by which pollination is achieved is quite explosive... literally. 

Catasetum orchids are pollinated by large Euglossine bees. Attracted to the male flowers by their alluring scent, the bees land on the lip and begin to probe the flower. Above the lip sits two hair-like structures. When a bee contacts these hairs, a structure containing sacs of pollen called a pollinia is launched downwards towards the bee. A sticky pad at the base ensures that once it hits the bee, it sticks tight. 

Male Catasetum flower in action. Taken from BBC's Kingdom of Plants.

Male Catasetum flower in action. Taken from BBC's Kingdom of Plants.

Bees soon learn that the male flowers are rather unpleasant places to visit so they set off in search of a meal that doesn't pummel them. This is quite possibly why the flowers of the individual sexes look so different from one another. As the bees visit the female flowers, the pollen sacs on their back slip into a perfect groove and thus pollination is achieved. 

Eulaema polychroma  visiting  Catasetum integerrimum

Eulaema polychroma visiting Catasetum integerrimum

The uniqueness of this reproductive strategy has earned the Catasetum orchids a place in the spotlight among botanists and horticulturists alike. It begs the question, how is sex determined in these orchids? Is it genetic or are there certain environmental factors that push the plant in either direction? As it turns out, light availability may be one of the most important cues for sex determination in Catasetum

31111938873_b2006358fc_o.jpg

A paper published back in 1991 found that there were interesting patterns of sex ratios for at least one species of Catasetum. Female plants were found more often in younger forests whereas the ratios approached an even 1:1 in older forests. What the researchers found was that plants are more likely to produce female flowers under open canopies and male flowers under closed canopies. In this instance, younger forests are more open than older, more mature forests, which may explain the patterns they found in the wild. It is possible that, because seed production is such a costly endeavor for plants, individuals with access to more light are better suited for female status. 

Catasetum macrocarpum

Catasetum macrocarpum

Aside from their odd reproductive habits, the ecology of these plants is also quite fascinating. Found throughout the New World tropics, Catasetum orchids live as epiphytes on the limbs and trunks of trees. Living in the canopy like this can be stressful and these orchids have evolved accordingly. For starters, they are deciduous. Most of the habitats in which they occur experience a dry season. As the rains fade, the plants will drop their leaves, leaving behind a dense cluster of green pseudobulbs. These bulbous structures serve as energy and water stores that will fuel growth as soon as the rains return. 

Catasetum silvestre in situ

Catasetum silvestre in situ

The canopy can also be low in vital nutrients like nitrogen and phosphorus. As is true for all orchids, Catasetum rely on an intimate partnership with special mychorrizal fungi to supplement these ingredients. Such partnerships are vital for germination and growth. However, the fungi that they partner with feed on dead wood, which is low in nitrogen. This has led to yet another intricate and highly specialized relationship for at least some members of this orchid genus. 

36793851562_606bc44817_o.jpg

Mature Catasetum are often found growing right out of arboreal ant nests. Those that aren't will often house entire ant colonies inside their hollowed out pseudobulbs. This will sometimes even happen in a greenhouse setting, much to the chagrin of many orchid growers. The partnership with ants is twofold. In setting up shop within the orchid or around its roots, the ants provide the plant with a vital source of nitrogen in the form of feces and other waste products. At the same time, the ants will viciously attack anything that may threaten their nest. In doing so, they keep many potential herbivores at bay.  

Female  Catasetum planiceps

Female Catasetum planiceps

To look upon a flowering Catasetum is quite remarkable. They truly are marvels of evolution and living proof that there seems to be no end to what orchids have done in the name of survival. Luckily for most of us, one doesn't have to travel to the jungles and scale a tree just to see one of these orchids up close. Their success in the horticultural trade means that most botanical gardens house at least a species or two. If and when you do encounter a Catasetum, do yourself a favor and take time to admire it in all of its glory. You will be happy that you did. 

Photo Credits: [1] [2] [3] [4] [5] [6] [7] [8] [9] 

Further Reading: [1] [2] [3] [4] [5]

Devil's Gardens

Tococa_leaves.jpg

Imagine, if you will, walking through the dense understory somewhere in the Amazon basin. Diversity reigns supreme here and it would seem that every few steps reveals myriad new plant species. As you walk along, something in the vegetation changes. You stumble into a clearing in the middle of the forest dominated entirely by a single species of tree. Why the sudden change? How did this monoculture develop? You, my friend, have just found yourself on the edge of a Devil's garden. 

Devil's gardens are said to be the resting place of an evil spirit known to local tribes as Chullachaki. Anyone unlucky enough to stumble into his garden is said at risk of attack or curse. In reality, these gardens have a biological origin. The real gardeners are a handful of ant species which seem to have rather specific gardening preferences. Careful inspection would reveal that the gardens largely consist of trees in one of three genera - Duroia, Tococa, or Clidemia

Tococa  sp. (Melastomataceae)

Tococa sp. (Melastomataceae)

The reason that ants are so fond of these genera has to do with housing. These plant groups contain species which produce swellings along their stems and petioles known as domatia. These domatia are hollow and are the favorite nesting spots of various ant species. Ant colonies set up shop within. As anyone who has ever blundered into an ant colony can attest, ants are quite voracious at defending their home. 

By providing ant colonies with a home base, these plants have essentially hired body guards. It is a wonderful form of symbiosis in which the ants aggressively defend against anything that might want to take a bite out of their host tree. Any herbivore trying to take up residence or lay eggs within the Devil's garden is viciously attacked. In doing so, the ants are protecting their host trees at the cost of all other plants unlucky enough to germinate within the garden. Still, this anti-herbivore behavior doesn't totally explain the monoculture status these host trees achieve within the garden itself. Why are these gardens so ominously devoid of other plant species?

To answer this, one would have to watch how the ants behave as they forage. While scouting, if ants encounter a seedling of their host tree, nothing really happens. They go about their business and let the seedling grow into a future home. When they encounter a non-host tree, however, their behavior completely changes. 

Behold - A Devil's Garden

Behold - A Devil's Garden

The ants begin biting the stem of the plant, exposing its vascular tissue. As they bite, the ants also sting the foreign seedling, injecting minute amounts of formic acid into the wound. One or two ants isn't enough to bring down a seedling but one thing ants have on their side are numbers. Soon an entire platoon of ants descend upon the hapless seedling, stinging it repeatedly. In no time at all, the seedling succumbs to the formic acid injections and dies. By repeating this process any time a foreign plant is found growing within the vicinity of the garden, the resident ants ensure that only trees that will produce domatia are allowed to grow in their garden. Thus, a Devil's garden has been formed. 

Although this relationship seems incredibly beneficial for each party, it does come at some cost to the plants themselves. Certainly forming the domatia is a costly endeavor on the part of the plant, but research has also shown that growing in such high, monoculture-like densities in the jungle has its downsides. It has been found that individual host trees can actually experience more herbivore pressures when growing within a Devil's garden than if it was growing alone, elsewhere in the forest. 

Despite their aggression towards herbivores, the ants simply cannot be everywhere at once. As such, the high densities of host tree species within a Devil's garden act like a dinner bell for any insect that enjoys feeding on that particular type of plant. Essentially, the ants are concentrating a potential food source. Experts believe that this might explain why Devil's gardens never completely take over entire swaths of forest. Essentially, there are diminishing returns to living in such high densities. Still, benefits must outweigh costs if such mutualisms are to be maintained and it is quite obvious that both plant and ant benefit from this interaction to a great degree. 

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3] [4]