The Whorled Pogonia

I live for moments like this. The only downside to that is I can never really predict when they are going to happen. There I was driving up a mountain road in search of a handful of other plant species related to my research. The road was narrow and there was a steep bank on the drivers side. The Southern Appalachian Mountains are brimming with botanical diversity. As such, it can be hard to tease out individual plants, especially while driving. This is why having a refined search image comes in handy. 

I was rounding a bend in the road when something out my window caught my eye. My mind went racing and it wasn't long before a suspicion crept into my head. If I was right, this was an opportunity I was not going to miss. I found the nearest pull off, parked the truck, and ran back down the road. I am so happy that I decided to trust my instincts. There in front of me was a small population of whorled pogonia orchids (Isotria verticillata). 

It was like being in the presence of a celebrity that I had been stalking for years. This was an orchid I have been dying to see. The harder I looked the more I saw. I had to sit down. Here in front of me was a species of orchid that isn't seen by many. In fact, entire populations of these species can go unseen for decades until they have enough energy to flower. 

Flowering in this species is said to be quite erratic. Because they live in shaded environments, building up the energy needed to reproduce can be difficult. Like all orchids, the whorled pogonia relies on an obligate relationship with mycorrhizal fungi to supply the nutrients it needs. In return, the orchids provide fungi with carbohydrates. The problem with erratic flowering, however, is that it makes reproduction difficult. Rarely are two populations flowering at the same time and in close enough proximity for successful cross pollination. More often, these orchids will self fertilize, which can lead to high rates of inbreeding. 

Large bees are the main pollinators of the whorled pogonia. The flowers themselves are reported to produce a feint odor reminiscent of Vanilla. This is interesting to note because in the greater scheme of orchid phylogenetics, this species is placed in the Vanilla subfamily, although such distinctions can get muddled quickly. Regardless, simply being in the presence of this orchid was enough to give me goosebumps. It is a shame that such a species is being lost throughout much of its range. 

Further Reading:
http://bit.ly/1ssBmdF

http://bit.ly/1WEmZzm

The Corybas Orchids

Today I want to introduce you to the wild miniature world of the helmet orchids (genus Corybas). These little marvels of evolution are native to Australia, New Zealand, New Guinea, southeast Asia, the Himalayas, southern China, a handful of Pacific islands, and a few sub-Antarctic islands as well. They are a poorly understood genus and at least a handful of species are threatened by habitat destruction and poaching. If you are looking at these and thinking "I want one!" please do your homework and make sure that you are purchasing nursery grown specimens.

Photo Credits: kavanaru (http://bit.ly/1TtoBuq), cvh-news CVH新闻 (http://bit.ly/1VqTb5G), Orchi (Wikimedia Commons), Michael Whitehead (Wikimedia Commons), chipmunk_1 (Wikimedia Commons), Boaz Ng (http://bit.ly/1LwfmSp), Jon Sullivan (http://bit.ly/1SVfjrg), and Lucas Arrrrgh (http://bit.ly/24dlytW)

Further Reading:
http://www.iucnredlist.org/details/44392794/0

http://www.iucnredlist.org/details/22486395/0

http://orchids.chookman.id.au/corybas/corybas.html

Shhhh... Let Him Finish

Sexual deception is rampant in the orchid family. Orchid genera all over the world produce flowers that trick sexually charged male insects into failed mating attempts. The orchids go to great lengths to resemble females both in appearance and smell. Indeed, many sexually deceptive orchid species emit odors that precisely mimic the pheromones of specific insect species. 

In many instances, the orchids ruse is so powerful that male insects will often preferentially visit the flower over an actual female. For many of the sexually deceptive orchids, all that is required is the male to pay a visit. No attempt at copulation is necessary, though that doesn't stop vigorous attempts. Because of this, it is easy to see how the minute cost incurred to the insects is not enough to drive evolution away from deception. However, there is a group of tongue orchids (genus Cryptostylis) from Australia that seem to throw a wrench into this finely tuned system.... or do they?

The tongue orchids rely on deceiving male wasps in the genus Lissopimpla into mating with their flowers. As mentioned above, the males simply cannot resist the attempt. However, unlike many other reported cases, the male wasps actually mate to completion, depositing their sperm onto the flower. This should be disastrous for the wasps since males not only prefer flowers to wasp females, but they also waste their precious few mating attempts. How could this have evolved?

Most sexually deceptive orchids rely on bees and wasps (family Hymenoptera) for their pollination. Thus, the answer to this evolutionary conundrum lies in the mating system of these insects. Queens are genetically haplodiploid. I will spare you the details on that but basically what it means for Hymenoptera is that female offspring are produced via fertilized eggs whereas male offspring are produced via unfertilized eggs. 

The orchids have (unknowingly of course) tapped into this system to their benefit. If by mating with the flower and not a female wasp meant that no offspring were produced, this system surely would not have evolved to the level that it has. Instead, female wasps that have not been mated with or received less sperm than usual end up producing a higher amount of male offspring.

The orchids are effectively skewing the sex ratio of their pollinators! "How is this a sustainable system?" you may be asking. Well, by causing female wasps to produce more males, the orchids are ensuring that there will be more naive males in the population the next time they are in bloom. Also, by skewing the sex ratio towards males, there are now fewer females to mate with so that males become less choosy and more readily mate with orchids. Finally, with more sexually charged males flying around, each female has a greater chance of being fertilized. Because of the unique mating system that has evolved in Hymenoptera, the orchids have thus been able to evolve this pollination strategy with little harm to the pollinators.

Photo Credit: photobitz

Further Reading:
http://instructional1.calstatela.edu/kfisher2/BIOL360/classroom.activities/species_interact._casestudies/orchid.sex.pseudo.II.pdf

Orchid Ant Farms

I am beginning to think that there is no strategy for survival that is off-limits to the orchid family. Yes, as you may have figured out by now, I am a bit obsessed with these plants. Can you really blame me though? Take for instance Schomburgkia tibicinis (though you may also see it listed under the genera Laelia or more accurately, Myrmecophila). These North, Central, and South American orchids are more commonly referred to as cow-horn orchids because they possess hollow pseudobulbs that have been said to been used by children as toy horns. What is the point of these hollow pseudobulbs?

A paper published back in 1989 in the American Journal of Botany found the answer to that question. As it turns out, ants are quite closely associated with orchids in this genus. They crawl all over the flowers, feeding on nectar. The relationship goes much deeper though. If you were to cut open one of these hollow pseudobulbs, you would find ant colonies living within them. The ants nest inside and often pile up great stores of food and eventually waste within these chambers. The walls of the chambers are lined with a dark tissue that was suspect to researchers.

Using radioactively labeled ants, the researchers found that the orchids were actually taking up nutrients from the ant middens! What's more, nutrients weren't found solely in adjacent tissues but also far away, in the actively growing parts of the roots. These orchids are not only absorbing nutrients from the ants but also translocating it to growing tissues.

While orchids without a resident ant colony seem to do okay, it is believed that orchids with a resident ant colony do ever so slightly better. This makes sense. These orchids grow as epiphytes on trees, a niche that is not high in nutrients. Any additional sources of nutrients these plants can get will undoubtedly aid in their long-term survival. Also, because the ants use the orchids as a food source and a nest site, they are likely defending them from herbivores.

Photo Credit: Scott.Zona (http://bit.ly/1hvWiGX)

Further Reading:
http://www.jstor.org/stable/2444355