There's Metal in Them Thar Trees!

The-famous-blue-green-latex-of-Pycnandra-acuminata-that-instigated-the-global-search-for.png

Whereas most plants can take up metals from their environment on some level, there are a handful of plants species on this planet that are surprisingly good at it. We call these plants “hyperaccumulators,” and the levels of heavy metals in their tissues would be fatal to most organisms. It may seem strange that plants would willingly accumulate toxic levels of metal in their tissues until you consider both where these plants live and why they may be doing it.

Generally speaking, hyperaccumulators hail from regions of the world rich in metalliferous soils such as serpentine. These soils are difficult for plants to live in because of their naturally high metal content. The plants that do grow in metalliferous soils are often very restricted in their distribution and either cannot grow anywhere else or get out-competed in less toxic soils. Hyperaccumulators have been found to take up a variety of metals including nickel, zinc, cadmium, and many others. Some do this to such a degree that it actually changes the color of their sap.

Pycnandra acuminata  (top) is so good at taking up nickle from the soil in which it grows that its sap its blue-green in color (bottom).

Pycnandra acuminata (top) is so good at taking up nickle from the soil in which it grows that its sap its blue-green in color (bottom).

One of the most famous examples of a hyperaccumulator species is a tree endemic to the island of New Caledonia called Pycnandra acuminata. New Caledonia is a hot spot for metalliferous soils so finding such a tree there is not terribly surprising. What is surprising is just how much metal this tree accumulates. One study found that its blue-green sap contains upwards of 25% nickel. A similar example can be seen in a different species of tree known to science as Phyllanthus balgooyi, which is native to Borneo. Not only is this tree strange thanks to the fact that its leaves are not leaves at all, but rather flattened photosynthetic stems, but it is also a hyperaccumulator of nickel. Recent work suggests that its sap can contain upwards of 16% nickel, which also gives it a distinctive blue-green hue.

Again, there are several examples of plants that do this. It is by no means restricted to just nickel nor the islands of New Caledonia and Borneo. That is not to say its a common trait either. Despite its occurrence across different plant lineages, hyperaccumulation is still quite rare. To date, it is estimated that only about 0.2% of all angiosperms are capable of this feat. Also, it appears to be most common in tropical regions of the world. What is most amazing is that it doesn’t appear to be limited by the amount of metal in the soil. Researchers have found that many hyperaccumulators are able to maintain high levels of metal in their tissues across a wide range of soil metal concentrations. How they deal with this biologically is a topic for another post but the question remains, why concentrate toxic levels of heavy metals in your tissues?

142295730.vZN4tAtp.Phyllanthusbalgooyi.Inflower.jpg
Phyllanthus balgooyi  (top) also takes up so much nickle from its environment that its sap is blue-green in color (bottom).

Phyllanthus balgooyi (top) also takes up so much nickle from its environment that its sap is blue-green in color (bottom).

The answer is likely defense. Whereas the high concentrations of heavy metals in their tissues are not toxic to the plants themselves, they are certainly toxic to anything that may want to eat them. One way that hyperaccumulation can work as a defense mechanism is by deterring herbivores outright. Insects and other herbivores may be able to detect heavy metals within the tissues and will actively avoid feeding on those plants. If no other options are available, then eating such plants can straight up harm herbivores. One study found that locusts feeding on tissues containing high levels of heavy metals exhibited significant reductions in growth and development.

There is still a lot to learn about hyperaccumulation in plants. How this trait evolves, why we see it in some lineages and not others, and how plants are able to tolerate toxic levels of heavy metals are but a few of the questions that scientists are actively working on answering. One exciting avenue of research is understanding how some of these plants can be used to clean soils polluted by human activities such as mining. They call the process “phytomining” and it involves planting certain hyperaccumulators in polluted soils, allowing them to absorb metals, and then removing that biomass, taking all of the accumulated metals along with it. Certainly this needs a lot more work before it can be used effectively.

We need to act fast, however, as so many botanical hyperaccumulators are under threat of extinction. Because so many of these plants grow on restricted soil types in remote corners of the world, they are at great risk from habitat destruction. Places like New Caledonia are being strip mined at an unsustainable rate to get at the very metals that these plants have evolved to tolerate. If something is not done to protect these unique places and the flora they support, there is no telling what Earth stands to lose. This is yet another reason why we must support land conservation at all costs!

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4] [5] [6]

The World's Only Parasitic Gymnosperm

When we talk about parasitic plants, 99.9% of the time we are talking about angiosperms. However, deep in the mysterious forests of New Caledonia grows the single exception to the rule. Parasitaxus usta is the only parasitic gymnosperm known to exist. The sole member of its genus, P. usta is as strange and beautiful as it is mysterious.

P. usta hails from a strange family of gymnosperms known scientifically as Podocarpaceae. Its purple coloration is absolutely stunning and is the result of high concentrations of anthocyanin pigments in the vacuoles of its cells. Although this strange gymnosperm does in fact produce chloroplasts, they are quite small and the electron transport mechanisms that make photosynthesis possible no longer function.

The true nature of its parasitic lifestyle has remained quite a mystery over the last few decades. A handful of investigations have shown it to be rather unlike any other type of parasitic plant currently known. One of the most bizarre aspects of its morphology is that P. usta does not form any roots. This provided botanists the first clues that it may be a parasite. Further investigation has suggested that, similar to parasitic ericads and orchids, P. usta utilized a fungal intermediary to parasitize the roots of its only known host, another member of the Podocarpaceae family, Falcatifolium taxoides.

Transfer of carbohydrates has been shown to occur through this fungal connection, however, P. usta also seems to obtain nitrogen and water via a direct connection to its host's xylem tissues. In this way it is similar to some mistletoes. As such, it not only can maintain a very high rate of stomatal conductance and a very low water potential, it can also produce cone crops year round. To the best of my knowledge, no other parasitic plant on Earth adopts such a strange combination of strategies.

Despite its unique status, much of the ecology of P. usta remains a complete mystery. For instance, despite being a root parasite, stems of P. usta have been found sprouting from its host tree over 3 feet above the ground. This suggests that P. usta may actually be a strange type of holoparasite. Also, it is entirely unknown how this parasitic gymnosperm becomes established on its host. To date no seed dispersal mechanisms have been described, nor are the seeds sticky. Perhaps its all a matter of chance, which would explain why so few individuals have been found. At the end of the day, the fact that it occurs on a remote island in very few locations means that this bizarrely unique gymnosperm will hold on to its mysteries for many years to come.

Photo Credit: [1] [2]

Further Reading:

http://www.conifers.org/po/Parasitaxus.php

http://bit.ly/2cBUwvj

Meeting Amborella trichopoda

When I found out I would be seeing a living Amborella, a lump formed in my throat. There I was standing in one of the tropical houses at the Atlanta Botanical Garden trying to keep my cool. No amount of patience was ample enough to quell my excitement. How was I going to react? How big were these plants? Would I see flowers? Could I touch them? What were they growing in? My curiosity was through the roof.

Naturally this sort of excitement is reserved for those of us familiar with Amborella trichopoda. This strange shrub is not something that would readily stand out against a backdrop of tropical flora. However, if life history and ecology were to be translated into outward appearances, Amborella would likely be one of the most gaudy plants on this planet. What I was about the lay eyes on is the only member of the sole genus belonging to the family Amborellaceae, which is the sole member of the order Amborellales.

Even more exciting is its position on the angiosperm family tree. As flowering plants go, Amborella is thought to be the oldest alive today. Okay, so maybe this shrub isn't the oldest flowering plant in the world. It is likely that at one time, many millions of years ago, there were more representatives of Amborellaceae growing on this planet. Until we turn up more fossil evidence it is nearly impossible to say. Still, Amborella's place in the story of flowering plant evolution is consistently located at the base.

That is not to say that this shrub is by any means primitive. I think the first thing that shocked me about these plants is just how "normal" they appear. Sans flowers, I didn't see much out of the ordinary about them. They certainly look like they belong on our timeline. Without proper training in plant anatomy and physiology, there is little one could deduce about their evolutionary position. Regardless of my ignorance on plant morphology, there is plenty to look at on Amborella.

For starters, Amborella has tracheids but no vessel elements, making its vascular system more like that of a gymnosperm than an angiosperm. Its small flowers are borne in the axils of the evergreen leaves. It has no petals, only bracts arranged into a spiral of tepals. The female flowers consist of 4 to 8 free carpels and do not produce a style. Male flowers look like nothing more than a spiral cluster of stamens borne on short filaments.

If plant anatomy isn't enough to convince you, then the genetic analyses tell a much more compelling story. DNA sequencing consistently places Amborella at the base of the flowering plant family tree. Again, this is not to say that this shrub is by any means "primitive" but rather its lineage diverged long before what we would readily recognize as a flowering plant evolved. As such, Amborella offers us a window into the early days of flowering plants. By comparing traits present in more derived angiosperms to those of Amborella, researchers are able to better understand how the most dominant group of plants found their place in this world.

Another interesting thing happened when researchers looked at the DNA of Amborella. What they found was more than just Amborella genes. Inside the mitochondrial DNA are an unprecedented amount of foreign DNA from algae, lichens and mosses. In fact, an entire chunk of DNA corresponded to an entire mitochondrial genome of a moss! Researchers now believe that this is a case of extreme horizontal gene transfer between Amborella and its neighbors both growing on and around it. Both in the wild and in cultivation, Amborella is covered in a sort of "biofilm." Whether or not such gene transfer has assisted in the conservatism of this lineage over time remains to be seen.

At this point you may be asking how this lineage has persisted for over 130 million years. For the most part, it is probably due to chance. However, there is one aspect of its ecology that really stands out in this debate and that is its geographic distribution. Amborella is endemic to Grande Terre, the main island of New Caledonia. This is a very special place for biodiversity.

New Caledonia is a small fragment of the once great super-continent Gondwana. New Caledonia, which was part of Australia at that time, broke away from Gondwana when the super-continent began to break up some 200-180 million years ago. New Caledonia then broke away from Australia some 66 million years ago and has not been connected to another land mass since. A warm, stable climate has allowed some of the most unique flora and fauna to persist for all that time. Amborella is but one of the myriad endemic plants that call New Caledonia home. For instance, 43 species of tropical conifers that grow on these small islands are found nowhere else in the world. The whole region is a refugia of a long lost world.

Being a biodiversity hot spot has not spared New Caledonia from the threats of modern man. Mining, agriculture, urbanization, and climate change are all threatening to undo much of what makes this place so unique. The loss of a species like Amborella would be a serious blow to biodiversity, conservation, and the world as whole. We cannot allow this species to exist only in cultivation. New Caledonia is one place we must desperately try to conserve. Meeting this species has left a mark on me. Being able to observe living Amborella up close and personal is something I will never forget as my chances of seeing this species in the wild are quite slim. I am so happy to know that places like the Atlanta Botanical Garden are committed to understanding and conserving this species both in the wild and in cultivation. For now Amborella is here to stay. Long may it be that way.

 

Further Reading:

http://bit.ly/29MuMuw

http://bit.ly/29MuML0

http://bit.ly/29ZKNJS