Something Strange in Mexico

lac2.JPG

I assure you that what you are looking at here is indeed a plant. I would like you to meet the peculiar Lacandonia schismatica, one of roughly 55 species belonging to the family Triuridaceae. Not a single member of this family bothers with leaves or even chlorphyll. Instead, all members are mycoheterotrophic, meaning they make their living by parasitizing fungi in the soil. However, that is not why L. schismatica is so strange. Before we get to that, however, it is worth getting to know this plant a little bit better.

The sole member of its genus, Lacandonia schismatica grows in only a few locations in the Lancandon Jungle of southeastern Mexico. Its populations are quite localized and are under threat by encroaching agricultural development. Genetic analyses of the handful of known populations revealed that there is almost no genetic diversity to speak of among the individuals of this species. All in all, these factors have landed this tiny parasite on the endangered species list.

Mature flower of  Lacandonia schismatica . Three yellowish anthers (center) surrounded by rings of red carpels. Scale bar = 0.5cm.”  [SOURCE]

Mature flower of Lacandonia schismatica. Three yellowish anthers (center) surrounded by rings of red carpels. Scale bar = 0.5cm.” [SOURCE]

To figure out why L. schismatica is so peculiar, you have to take a closer look at its flowers. If you knew what to look for, you would soon realize that L. schismatica appear to be doing things in reverse. To the best of our knowledge, L. schismatica is the only plant in the world that known to have an inverted flower arrangement. The anthers of this species are clustered in the center of the flower surrounded by a ring of 60 or so pistils. The flowers are cleistogamous, which means they are fertilized before they even open, hence the lack of genetic diversity among individuals. 

Not all of its flowers take on this appearance. Researchers have found that in any given population, a handful of unisexual flowers will sometimes be produced. Even the bisexual flowers themselves seem to exhibit at least some variation in the amount of sexual organs present. Still, when bisexual flowers are produced, they only ever exhibit this odd inverted arrangement.

lac1.JPG

It is not quite clear how this system could have evolved in this species. Indeed, this unique floral morphology has made this species very hard to classify. Genetic analysis suggests a relation to the mycoheterotrphic family Triuridaceae. It was discovered that every once in a while, a closely related species known as Triuris brevistylis will sometimes produce flowers with a similar inverted morphology.

This suggests that the inversion evolved before the Lacandonia schismatica lineage diverged. One can only speculate at this point. The future of this species is quite uncertain. Climate change and habitat destruction could permanently alter the conditions so that this plant can no longer exist in the wild. This is further complicated by the fact that this species has proven to be quite difficult to cultivate. Only time will tell. For now, more research is needed on this peculiar plant.

Photo Credit: [1] [2] [3]

Further Reading: [1] [2] [3] [4]

Parasitic Plant Rediscovered After a 151 Year Absence

Thismia.JPG

Extinction is a hard status to confirm for many types organisms. Whereas discovering a new species requires finding only a single individual, declaring one extinct requires knowing that there are no individuals left at all. This is especially true when organisms live cryptic lifestyles, a point recently made quite apparent by the rediscovery of a small parasitic plant known scientifically ask Thismia neptunis.

Thismia neptunis is a type of parasite called a mycoheterotroph, which means it makes its living by parasitizing mycorrhizal fungi in the soil. It obtains all of its needs in this way. As such, it produces no leaves, no chlorophyll, and really nothing that would readily identify it outright as a plant. All one would ever see of this species are its bizarre flowers that look more like a sea anemone than anything botanical. Like most mycoheterotrophs, when not in flower it lives a subterranean lifestyle.

The original drawing of  Thismia neptunis  (from Beccari 1878).

The original drawing of Thismia neptunis (from Beccari 1878).

This is why finding them can be so difficult. Even when you know where they are supposed to grow, infrequent flowering events can make assessing population numbers extremely difficult. Add to this the fact that Thismia neptunis is only known from a small region of Borneo near Sarawak where it grows in the dense understory of hyperdiverse Dipterocarp forests. It was first found and described back in 1866 but was not seen again for 151 years. To be honest, it is hard to say whether or not most folks were actively searching.

Regardless, after a 151 year absence, a team of botanists recently rediscovered this wonderful little parasite flowering not too far from where it was originally described. Though more study will be needed to flesh out the ecology of this tiny parasitic plant, the team was fortunate enough to witness a few tiny flies flitting around within the flower tube. It could very well be that these odd flowers are pollinated by tiny flies that frequent these shaded forest understories.

As exciting as this rediscovery is, it nonetheless underscores the importance of forest conservation. The fact that no one had seen this plant in over a century speaks volumes about how little we understand the diversity of such biodiverse regions. The rate at which such forests are being cleared means that we are undoubtedly losing countless species that we don't even know exist. Forest conservation is a must. 

Click here to support forest conservation efforts in Borneo. 

Photo Credit and Further Reading: [1]

How a Giant Parasitic Orchid Makes a Living

34281162165_b5ba814c84_b.jpg

Imagine a giant vine with no leaves and no chlorophyll scrambling over decaying wood and branches of a warm tropical forest. As remarkable as that may seem, that is exactly what Erythrorchis altissima is. With stems that can grow to upwards of 10 meters in length, this bizarre orchid from tropical Asia is the largest mycoheterotrophic plant known to science.

Mycoheterotrophs are plants that obtain all of their energy needs by parasitizing fungi. As you can probably imagine, this is an extremely indirect way for a plant to make a living. In most instances, this means the parasitic plants are stealing nutrients from the fungi that were obtained via a partnership with photosynthetic plants in the area. In other words, mycoheterotrophic plants are indirectly stealing from photosynthetic plants.

In the case of E. altissima, this begs the question of where does all of the carbon needed to build a surprising amount of plant come from? Is it parasitizing the mycorrhizal network associated with its photosynthetic neighbors or is it up to something else? These are exactly the sorts of questions a team from Saga University in Japan wanted to answer.

33905127355_fd4bd84026_b.jpg

All orchids require fungal partners for germination and survival. That is one of the main reasons why orchids can be so finicky about where they will grow. Without the fungi, especially in the early years of growth, you simply don't have orchids. The first step in figuring out how this massive parasitic orchid makes its living was to identify what types of fungi it partners with. To do this, the team took root samples and isolated the fungi living within.

By looking at their DNA, the team was able to identify 37 unique fungal taxa associated with this species. Most surprising was that a majority of those fungi were not considered mycorrhizal (though at least one mycorrhizal species was identified). Instead, the vast majority of the fungi associated with with this orchid are involved in wood decay.

Stems climbing on fallen dead wood (a) or on standing living trees (b). A thick and densely branched root clump (c) and thin and elongate roots (d) [Source]

Stems climbing on fallen dead wood (a) or on standing living trees (b). A thick and densely branched root clump (c) and thin and elongate roots (d) [Source]

To ensure that these wood decay fungi weren't simply partnering with adult plants, the team decided to test whether or not the wood decay fungi were able to induce germination of E. altissima seeds. In vitro germination trials revealed that not only do these fungi induce seed germination in this orchid, they also fuel the early growth stages of the plant. Further tests also revealed that all of the carbon and nitrogen needs of E. altissima are met by these wood decay fungi.

These results are amazing. It shows that the largest mycoheterotrophic plant we know of lives entirely off of a generalized group of fungi responsible for the breakdown of wood. By parasitizing these fungi, the orchid has gained access to one of the largest pools of carbon (and other nutrients) without having to give anything back in return. It is no wonder then that this orchid is able to reach such epic proportions without having to do any photosynthesizing of its own. What an incredible world we live in!

33905171165_05da1d498c_b.jpg

Photo Credits: [1] [2]

Further Reading: [1]

Meet The Ghostworts

8458608143_5fae0d7b71_o.jpg

I love parasitic plants and I love liverworts. Imagine my excitement then when I learned that there are at least two species of parasitic liverworts! These bizarre little plants are currently the only parasitic non-vascular plants known to science. 

The first description of a ghostwort dates back to 1919. Although no description of habitat was given, the account describes a set of liverwort thalli containing no chlorophyll and whose cells were full of mycorrhizal fungi. They were assigned to the genus Aneura and that was that. Further descriptions of this plant would not be made for more than a decade.

A ghostwort gametophyte with spike-like sporophytes.

A ghostwort gametophyte with spike-like sporophytes.

Proper attention was not given to this group until the 1930's. More plants started turning up among the humus and mosses of forests and wetlands throughout Finland, Sweden, and Scotland. A more thorough workover of specimens was made and the plants were moved into their own genus, Cryptothallus, which accurately captured their subterranean habit. They were given the name Cryptothallus mirabilis.

Another species of Cryptothallus was discovered in Costa Rica in 1977. It was named Cryptothallus hirsutus. Only one other collection of these species was made and it remains the lesser known of the two species. It is interesting to note the disparity between their ranges, with C. mirabilis inhabiting northern portions of Europe, and C. hirsutus only known from those two collections in Central America. Regardless, these odd liverworts have received a bit more attention in recent years.

It seems that the ghostworts manage to capture the attention of anyone who looks hard enough. For instance, a handful of attempts have been made to cultivate ghostworts in a controlled lab setting. Originally, plants were grown exposed to varying levels of light but try as the may, researchers were never able to coax the plants into producing chlorophyll. It would appear that these tiny liverworts are in fact some sort of parasite.

Spike-like sporophytes with a branching gametophyte. 

Spike-like sporophytes with a branching gametophyte. 

Proper evidence of their parasitic lifestyle was finally demonstrated 2003. Researchers were able to grow C. mirabilis in specialized observation chambers in order to understand what is going on under the soil. As it turns out, those numerous mycorrhizal connections mentioned in the original description are the key to survival for the ghostworts. The team showed that the ghostwort tricks fungi in the genus Tulasnella into forming mycorrhizal connections with its cells. These fungi also happen to be hooked up to a vast network of pine and birch tree roots.

By tricking the fungi, into an association, the ghostworts are able to steal carbohydrates that the fungi gain from the surrounding trees. Like all mycoheterotrophs, the ghostworts are essentially indirect parasites of photosynthetic plants. Their small size and relative rarity on the landscape likely helps these plants go unnoticed by the fungi but much more work needs to be done to better understand such dynamics.

Ghostworts look more like fungi than plants.

Ghostworts look more like fungi than plants.

In 2008, phylogenetic attention was paid to the ghostworts in order to better understand where they fit on the liverwort branch of the tree. As it turns out, Cryptothallus appears to be nestled quite comfortably within the genus Aneura. Because of this, the authors suggest disposing of the genus Cryptothallus altogether. Outside of simply placing this species back in its originally described genus, it affiliation with Aneura is quite interesting from an evolutionary standpoint.

Other liverworts in the genus Aneura are also known to form mycorrhizal relationships with Tulasnella. Unlike the ghostworts, however, these liverworts are fully capable of photosynthesis. Because these intimate fungal relationships were already in place before the ghostworts began evolving towards a fully parasitic lifestyle, it suggests that the saprophytic nature of Tulasnella fungi may have actually facilitated this jump. 

The cryptic nature of the ghostworts has left many a botanist wanting. Their subterranean habit makes them incredibly hard to find. Who knows what secrets this group still holds. Future discoveries could very well add more species to the mix or, at the very least, greatly expand the known range of the other two.

Photo Credits: Brian Eversham [1] [2] [3] [4]

Further Reading: [1] [2] [3]

 

Newly Discovered Orchid Doesn't Bother With Photosynthesis or Opening Its Flowers

A new species of orchid has been discovered on the small Japanese island of Kuroshima. Though not readily recognized as an orchid, it nonetheless resides in the tribe Epidendroideae. Although the flowers of its cousins are often quite showy, this orchid produces small brown blooms that never open. What's more, it has evolved a completely parasitic lifestyle. 

The discovery of this species is quite exciting. The flora of Japan has long thought to be well picked over by botanists and ecologists alike. Finding something new is a special event. The discovery was made by Suetsugu Kenji, associate professor at the Kobe University Graduate School of Science. This discovery was made about a year after a previous parasitic plant discovery made on another Japanese island a mere stones throw from Kuroshima (http://bit.ly/2dYN12L).

Coined Gastrodia kuroshimensis, this interesting little parasite flies in the face of what we generally think of when we think of orchids. It is small, drab, and lives out its entire life on the shaded forest floor. Like the rest of its genus, G. kuroshimensis is mycoheterotrophic. It produces no leaves or chlorophyll, living its entire life as a parasite on mycorrhizal fungi underground. This is not necessarily bizarre behavior for orchids (and plants in general). Many different species have adopted this strategy. What was surprising about its discovery is the fact that its flowers never seem to open. 

In botany this is called "cleistogamy." It is largely believed that cleistogamy evolved as both an energy saving and survival strategy. Instead of dumping lots of energy into producing large, showy flowers to attract pollinators, that energy can instead be used for seed production and persistence. Additionally, since the flowers never open, cross pollination cannot occur. The resulting offspring share 100% of their genes with the parent plant. Although this can be seen as a disadvantage, it can also be an advantage when conditions are tough. If the parent plant is adapted to the specific conditions in which it grows, giving 100% of its genes to its offspring means that they too will be wonderfully adapted to the conditions they are born into. 

As you can probably imagine, pure cleistogamy can be quite risky if conditions rapidly change. In the face of continued human pressures and rapid climate change, cleistogamy as a strategy might not be so good. That is one reason why the discovery of this bizarre little orchid is so interesting. Whereas most species that produce cleistogamous flowers also produce "normal" flowesr that open, this species seems to have given up that ability. Thus, G. kuroshimensis offers researchers a window into how and why this reproductive strategy evolved. 

Photo Credit: Suetsugu Kenji

Further Reading:

[1]

A New Species of Parasite Discovered in Japan

A new species of parasitic plant has been discovered on the Japanese island of Yakushima. A small population was found by Suetsugu Kenji during a survey of the lowland laurel forests that cover much of the island. Despite being an authority on parasitic plants of this region, Professor Suetsugu did not recognize these plants. As such, a specimen was collected for a closer look.

An in depth examination revealed that this was indeed a new species. It has been named Sciaphila yakushimensi in honor of the island on which it was discovered. It belongs to a family of plants called Triuridaceae. They are closely related to the family Alismataceae and many members of this family have foregone photosynthesis for a parasitic lifestyle.

S. yakushimensi is what we call a mycoheterotroph. It parasitizes mycorrhizal fungi, taking the nutrients it needs and giving nothing in return. The fungi themselves are getting their nutrient needs from the trees that grow in the forest. As such, S. yakushimensi could not exist without an intact forest to support its fungal host.

This is the troubling part. Only two populations of S. yakushimensi have been discovered. Its parasitic lifestyle makes it difficult to get an accurate estimation of its numbers. These plants live most of their lives underground, only appearing when it is time to flower. Because of this, researchers are already suggesting that this species be considered endangered.

Sadly, its native forest is under constant threat of logging. Much of this region remains unprotected. Since mycoheterotrophs like S. yakushimensi rely on an intact forest capable of supporting its host fungi, any disturbance that threatens the forest can spell disaster for these parasites. Far from being a detriment to the forests in which they live, parasitic plants like S. yakushimensi can serve as a very important reminder of how crucial it is to preserve entire ecosystems rather than single species.

Photo Credit: Yamashita Hiroaki

Further Reading:

https://www.tsumura.co.jp/english/kampo/plant/090/090_01.html

Itty Bitty Bartonia

Every plant enthusiast has a handful of species that they search high and low for any time they find themselves out and about. It may be a species you have seen a bunch of times or one your have only read about in the literature. Either way, the search image burns strong in your mind so that when you finally come across the species in question, it is like seeing a celebrity. For me, one of those species is Bartonia virginica.

It may not look like much. Indeed, it is a rather diminutive plant, barely poking its flowers out of the shadows cast by pretty much every other plant near by. However, when conditions are just right, this little gentian seems to flourish. With leaves that have been reduced to small scales that sheath the dainty stem in a couple places, all that really stands out are the tiny, cream colored flowers that cluster near the top. A close inspection of the flowers with a hand lens reveals the unmistakable morphology that runs true throughout the gentian family.

Whereas the stem of the plant does contain chlorophyll, it has long been suspected that this plant must rely on other means of obtaining carbon due to its highly reduced leaves. A paper published in 2009 by Cameron et al., was able to shed some light on this matter. As it turns out, there is strong evidence in support of B. virginica being partially mycoheterotrophic.

This is such a cool little gentian. I was so happy to have come across some. Sometimes it's not always the biggest or the showiest that make our day, but rather the subtle and unique.

Further Reading:
http://plants.usda.gov/core/profile?symbol=bavi3

http://www.amjbot.org/content/97/8/1272.short