The Largest Mistletoe


When we think of mistletoes, we generally think about those epiphytic parasites living on branches way up in the canopy. The mistletoe we are discussing in this post, however, is a decent sized tree. Nuytsia floribunda is a native of western Australia where it is known locally as moojar or the Christmas tree. To the best of our knowledge, it is the largest mistletoe known to science.

Nuytsia floribunda is a member of the so-called showy mistletoe family (Loranthaceae). It along with all of its mistletoe cousins reside in the order Santalales but from a phylogenetic standpoint, the family Loranthaceae is considered sister to all other mistletoes. This has excited my botanists as it allows us a chance to better understand how parasitism may have evolved in this group as a whole.

Speaking of parasitism, there are some incredible things going on with N. floribunda that are worth talking about. For starters, it is not fully parasitic but rather hemiparasitic. As you can tell by looking at the tree decked out in a full canopy of leaves, N. floribunda is entirely capable of photosynthesizing on its own. In fact, experts feel that it is fully capable of meeting all of its own carbohydrate needs. Instead, it parasitizes other plants in order to acquire water and minerals. How it manages this is remarkable to say the least.

Nuytsia floribunda is a root parasite. Its own roots fan out into the surrounding soil looking for other roots to parasitize. Amazingly, exploratory roots of individual N. floribunda have been found upwards of 110 meters (360 ft.) or more away from the tree. When N. floribunda do find a suitable host root, something incredible happens. It begins to form specialized roots called “haustoria”, which to form a collar-like structure around the host’s roots.

Whole haustoria of Nuytsia (white [ha]) and host root (dark brown). * indicates `gland' and developing `cutting device.

Whole haustoria of Nuytsia (white [ha]) and host root (dark brown). * indicates `gland' and developing `cutting device.

The collar gradually swells and a small horn forms on the inside of the haustoria. Swelling of the haustoria is the result of an influx of water and as the pressure around the host root builds, the haustorial horn of N. floribunda physically cuts into its victim. Once this cut is formed, the haustoria form balloon-like outgrowths which intrude into the xylem tissues of the host root, thus forming the connection that allows N. floribunda to start stealing the water and minerals it needs.

Even more amazing is the fact that roots aren’t the only thing that N. floribunda will attempt to exploit. Many inanimate objects have been found wrapped up in a haustorial embrace including dead twigs, rocks, fertilizer granuals, and even electric cables! Its non-selective parasitic nature appears to have left it open to exploring other, albeit dead end options. I don’t want to paint the picture that this tree as the enemy of surrounding vegetation. It is worth noting that N. floribunda extracts very little from any given host so its impact is spread out among the surrounding vegetation, making its overall impact on host plants minimal most of the time.


Provided its needs have been met, N. floribunda puts on one heck of a show around December. In fact, the timing of its blooms is the reason it earned the common name of Christmas tree. Flowering for this species is not a modest affair. Each tree is capable of producing multiple meter-long inflorescences decked out in sprays of bright orange to yellow flowers. The flowers themselves produce copious amounts of pollen and nectar, making it an important food source for resident pollinators. Though many different species have been documented visiting the flowers, it is thought that beetles and wasps are the most effective at pollination.

Seed dispersal for N. floribunda is mainly via wind. Each fruit is adorned with three prominent wings. After they detach from the tree, the fruits usually break apart into three samaras, each with its own wing. The key for success of any propagule is ending up in a site suitable for germination. According to some, this can be a bit tricky and attempts at cultivating this plant in captivity have not been terribly successful. It would seem that nature knows best when it comes to reproductive success in N. floribunda. It may be worth trying to figure it out though because recent evidence suggests that this species is not faring well with human development. As the surrounding landscapes of western Australia become more and more urbanized, plants like N. floribunda seem to be on the decline. Perhaps renewed interest in growing this species could change the tide for it as well as others.


Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4]

A Fern With Flower Genes - An Odd Case of Horizontal Gene Transfer

When researchers at Harvard decided to take a look at the genome of the rattlesnake fern (Botrypus virginianum) they found something completely unexpected. Whereas one set of genes they looked at placed this species firmly in the family to which it belongs, Ophioglossaceae, two other genes placed it in the Loranthaceae, a completely unrelated family of flowering plants. What are flowering plant genes doing in a fern?

The rattlesnake fern is a ubiquitous species found throughout the northern hemisphere. It is believed to have evolved in Asia and then radiated outward using ancient land bridges that once connected the continents. At some point before this radiation occurred, the rattlesnake fern picked up some genes that were entirely foreign.

Horizontal gene transfer, the transfer of genes from one organism to another without reproduction, is nothing new in nature. Bacteria do it all the time. Even plants dabble in it every now and then. The surprising thing about this recently documented case is that it is the first discovery of horizontal gene transfer between an angiosperm and a fern. Up until this point, examples within the plant realm have been seen between ferns and hornworts as well as some parasitic plants and their hosts.

This is why the rattlesnake fern genome is so interesting. How did this occur? Though there is no way of telling for sure, researchers believe that one of two things could have happened. The first involves root parasitism. The family Loranthaceae is home to the mistletoes, a group of plants most famous for their parasitic nature. Although the majority of mistletoe species are stem parasites, at least three genera utilize root parasitism. It could be that an ancient species of mistletoe transferred some genes while parasitizing a rattlesnake fern.

This scenario seems to be the least likely of the two as no representatives of the root parasitic mistletoes currently exist in Asia, though it is entirely possible that some did at one time. The other possibility doesn't involve parasitism at all but rather fungi. Rattlesnake ferns are obligate mycotrophs and thus cannot live without certain species of mycorrhizal fungi. Perhaps the transfer of genes was achieved indirectly via a shared mycorrhizal network. This hypothesis is especially tantalizing because if it is found to be true, it would help explain many other examples of horizontal gene transfer that currently lack a mechanism. Only time and more research will tell.

Photo Credit: Aaron Carlson (

Further Reading: