Orchid Booby Traps

Pterostylis coccina. Photo by BerndH licensed under CC BY-SA 3.0

Pterostylis coccina. Photo by BerndH licensed under CC BY-SA 3.0

Looking as if they have escaped from some sort of modern art exhibit, the flowers of the various greenhood orchids (genus Pterostylis) are as complex as they are beautiful. Native throughout Australia, New Zealand, New Guinea, New Caledonia, and Indonesia, greenhood orchids number around 300 species, all of which are terrestrial. As more attention is paid to their ecology, we are also discovering that many of those 300 species utilize seriously complex trickery to increase their chances of being pollinated.

Pterostylis metcalfei. Photo by Geoff Derrin licensed under CC BY-SA 4.0

Pterostylis metcalfei. Photo by Geoff Derrin licensed under CC BY-SA 4.0

Though they vary in shape, size, and color, the flowers of greenhorn orchids roughly conform to a similar morphological theme. The dorsal sepal and two lateral petals are fused, forming a good-like structure, hence the hooded reference in the common name. On the front of the flower, the two lateral sepals also fuse near their base and taper into two points or wings at the top that give the flowers even more charisma. The whole structure forms a sort-of pitfall trap around the sexual organs. In many species, the lower petal or labellum often sticks up and out of the mouth of the floral tube and is frequently dressed in hairs or other protuberances.

Pterostylis turfosa. Photo by Geoff Derrin licensed under CC BY-SA 4.0

Pterostylis turfosa. Photo by Geoff Derrin licensed under CC BY-SA 4.0

Greenhood orchid flowers are true marvels of evolution. Not only are they structurally complex, they are also painted in various shades of greens, whites, reds, and browns. Of course, all of this intricate beauty serves a single function for these orchids, sex. Essentially, greenhood orchid flowers are pollinator booby traps. Like so many other orchids, the greenhoods are tricksters, luring in their pollinators with the promise of food or even sex but offering nothing in return. Though we still have a lot to learn about pollination in this genus, what evidence we have compiled indicates that the promise of sex is the main ruse the greenhoods employ.

Pterostylis baptistii. Photo by Melburnian licensed under CC BY 3.0

Pterostylis baptistii. Photo by Melburnian licensed under CC BY 3.0

The prevalence of male insects visiting the flowers of many greenhood species tells us these orchids achieve pollination via sexual deception. Lured in by scents that precisely mimic the pheromones of receptive female insects, the males land on the flower and begin searching for a mate. They inevitably begin exploring the labellum, which leads them down into the floral tube. At a certain point in their journey, the male insect will reach a tipping point on the labellum. Like an unbalanced seesaw, the labellum snaps backwards as the insect’s weight shifts, slamming the visitor into the column where it comes into contact with the reproductive organs.

The whole process seems very alarming for the unsuspecting victim. The male insect will struggle quite a bit before it finds a single escape route provided by the floral anatomy that ensures both pollen acquisition and deposition. Experiments have shown that this lever mechanism can be repeated upwards of 3 times within a few hours, so each flower has at least a few attempts to get the process right.

Pterostylis alpina.  Photo by Melburnian licensed under CC BY 3.0

Pterostylis alpina. Photo by Melburnian licensed under CC BY 3.0

So, who are the insects that fall victim to the greenhood ruse? It turns out that its mostly small flies like fungus gnats and mosquitoes. The few detailed investigations that have been made into the pollination syndromes of these orchids has revealed surprisingly complex and often species-specific relationships between the plants and their pollinators. This makes sense from a chemical standpoint. The mating pheromones of one species of fly or mosquito are unlikely to attract males of different species. As such, the orchids trickery only works on one or possibly even a couple closely related species. Still, many mysteries abound in this diverse and widespread group of orchids and it will take a new generation of curious botanists and ecologists to uncover them.

Further Reading: [1] [2] [3]

What an orchid that smells like rotting meat can tell us about carrion flies

Satyrium pumilum Photo by Bernd Haynold licensed by CC BY-SA 3.0

Satyrium pumilum Photo by Bernd Haynold licensed by CC BY-SA 3.0

Orchids are really good at tricking pollinators. Take, for instance, this strange looking orchid from South Africa. Satyrium pumilum is probably obscure to most of us but it is doing fascinating things to ensure its own reproductive success. This orchid both smells and kind of looks like rotting meat, which is how it attracts its pollinators.

It is a bit strange to think of orchids living in arid climates like those found in South Africa but this family is defined by exceptions. That is not to say that Satyrium pumilum is a desert plant. To find this orchid, you must look in special microclimates where water sticks around long enough to support its growth. Populations of S. pumilum are most often found clustered near small streams or hidden under bushes throughout the western half of the greater Cape Floristic Region.

Satyrium pumilum blooms from the beginning of September until late October. As is typical in the orchid family, S. pumilum produces rather intricate flowers. Whereas the sepals are decked out in various shades of green, the interior of the flower is blood red in color. Also, unlike many of its cousins, S. pumilum doesn’t throw its flowers up on a tall stalk for all the world to see. Instead, its flowers open up at ground level and give off an unpleasant smell of rotting meat.

This is where pollinators enter into the picture. It has been found that carrion flies are the preferred pollinator for S. pumilum. By producing flowers at ground level that both look and smell like rotting meat, the plants are primed to attract these flies. The plants are tapping into the flies’ reproductive habits, a biological imperative so strong that they simply do not evolve a means of discriminating a rotting corpse from a flower that smells like one. This is the trick. Flies land on the flower thinking they have found a meal and a place to lay their eggs. They go through the motions as expected and pick up or deposit pollen in the process. Unfortunately for the flies, their offspring are doomed. There is not food to be found in these flowers.

What is most remarkable about the reproductive ecology of S. pumilum is that not just any type of fly will do. It appears that only a specific subset of flies actually visit the flowers and act as effective pollinators. Amazingly, this provides insights into some long-running hypotheses regarding carrion fly ecology.

(A) The habitat of S. pumilum (B) Satyrium pumilum in situ (scale bar = 1 cm). (C–E) Pollination sequence of a S. pumilum flower by a sarcophagid fly in an arena (scale bar for all three photos = 0·5 cm); (C) the fly carrying five pollinaria from ot…

(A) The habitat of S. pumilum (B) Satyrium pumilum in situ (scale bar = 1 cm). (C–E) Pollination sequence of a S. pumilum flower by a sarcophagid fly in an arena (scale bar for all three photos = 0·5 cm); (C) the fly carrying five pollinaria from other S. pumilum flowers enters an unpollinated flower (D) as the fly moves deeper into the flower towards the right-hand spur, it presses an attached pollinium against the stigma, and its thorax against the right-hand viscidium; (E) as it leaves the flower, the fly has deposited two massulae on the stigma (1), and removed a pollinarium (2) – it now carries six pollinaria. [SOURCE]

Apparently there has been a lot of debate in the fly community over why we see so many different species of carrion flies. Rotting meat is rotting meat, right? Probably not, actually. Fly ecologists have comes up with a few hypotheses involving niche segregation among carrion flies to explain their diversity on the landscape. Some believe that flies separate themselves out in time, with different species hatching out and breeding at different times of the year. Others have suggested that carrion flies separate themselves by specializing on carrion at different stages of decay. Still others have suggested that some flies specialize on large pieces of carrion whereas others prefer smaller pieces.

By studying the types of flies visiting the flowers of S. pumilum researchers did find evidence of niche segregation based on carrion size. It turns out that S. pumilum is exclusively pollinated by a group of flies known as sarcophagid carrion flies. These flies were regularly observed with orchid pollen sacs stuck to their backs and plants seemed to only set seed after they had been visited by members of this group. So, what is it about these flowers that makes them so specific to this group of flies?

The answer lies both in their size as well as the amount of scent they produce. It is likely that the quantity of scent compounds produced by S. pumilum most closely mimics that of smaller rotting corpses. The types of flies that visited these blooms were mostly females of species that lay relatively few eggs compared to other carrion flies. It could very well be that the smaller brood size of these flies allows them to effectively utilize smaller bits of carrion than other, more fecund species of fly. To date, this is some of the best evidence in support of the idea that flies avoid competition among different species by segregating out their feeding and reproductive niches.

Rotting meat smells are not uncommon in the plant world. Even within the home range of S. pumilum, there are other plants produce flowers that smell like carrion as well. It would be extremely interesting to look at what kinds of flies visit other carrion flowers and in what numbers. Like I mentioned earlier, reproductive is such a major part of any organisms life that it may simply be too costly for carrion flies to evolve a means of discriminating real and fake breeding sites. It is amazing to think of what we gain from trying to understand the reproductive biology of a small, obscure orchid growing tucked away in arid regions of South Africa.

Photo Credits: [1] [2]

Further Reading: [1]

The Fungus-Mimicking Mouse Plant

18156089_1751541684872689_3055288262507833768_o.jpg

The mouse plant (Arisarum proboscideum) is, to me, one of the most charming aroids in existence. Its small stature and unique inflorescence are a joy to observe. It is no wonder that this species has attained a level of popularity among those of us who enjoy growing oddball plants. Its unique appearance may be reason enough to appreciate this little aroid but its pollination strategy is sure to seal the deal.

The mouse plant is native to shaded woodlands in parts of Italy and Spain. It is a spring bloomer, hitting peak flowering around April. It has earned the name “mouse plant” thanks to the long, tail-like appendage that forms at the end of the spathe. That “tail” is the only part of the inflorescence that sticks up above the arrow-shaped leaves. The rest of the structure is presented down near ground level. From its stature and position, to its color, texture, and even smell, everything about the inflorescence is geared around fungal mimicry.

The mouse plant is pollinated by fungus gnats. However, it doesn’t offer them any rewards. Instead, it has evolved a deceptive pollination syndrome that takes advantage of a need that all living things strive to attain - reproduction. To draw fungus gnats in, the mouse plant inflorescence produces compounds that are said to smell like fungi. Lured by the scent, the insects utilize the tail-like projection of the spathe as a sort of highway that leads them to the source.

Once the fungus gnats locate the inflorescence, they are presented with something incredibly mushroom-like in color and appearance. The only opening in the protective spathe surrounding the spadix and flowers is a tiny, dark hole that opens downward towards the ground. This is akin to what a fungus-loving insect would come to expect from a tiny mushroom cap. Upon entering, the fungus gnats are greeted with the tip of the spadix, which has come to resemble the texture and microclimate of the underside of a mushroom.

Anatomy of a mouse plant inflorescence [SOURCE]

Anatomy of a mouse plant inflorescence [SOURCE]

This is exactly what the fungus gnats are looking for. After a round of courtship and mating, the fungus gnats set to work laying eggs on the tip of the spadix. Apparently the tactile cues are so similar to that of a mushroom that the fungus gnats simply don’t realize that they are falling victim to a ruse. Upon hatching, the fungus gnat larvae will not be greeted with a mushroomy meal. Instead, they will starve and die within the wilting inflorescence. The job of the adult fungus gnats is not over at this point. To achieve pollination, the plant must trick them into contacting the flowers themselves.

Both male and female flowers are located down at the base of the structure. As you can see in the pictures, the inflorescence is two-toned - dark brown on top and translucent white on the bottom. The flowers just so happen to sit nicely within the part of the spathe that is white in coloration. In making a bid to escape post-mating, the fungus gnats crawl/fly towards the light. However, because the opening in the spathe points downward, the lighted portion of the structure is down at the bottom with the flowers.

The leaves are the best way to locate these plants. Photo by Meneerke bloem licensed under CC BY-SA 4.0

The leaves are the best way to locate these plants. Photo by Meneerke bloem licensed under CC BY-SA 4.0

Confused by this, the fungus gnats dive deeper into the inflorescence and that is when they come into contact with the flowers. Male and female flowers of the mouse plants mature at the exact same time. That way, if visiting fungus gnats happen to be carrying pollen from a previous encounter, they will deposit it on the female flowers and pick up pollen from the male flowers all at once. It has been noted that very few fungus gnats have ever been observed within the flower at any given time so it stands to reason that with a little extra effort, they are able to escape and with any luck (for the plant at least) will repeat the process again with neighboring individuals.

The mouse plant does not appear to be self-fertile so only pollen from unrelated individuals will successfully pollinate the female flowers. This can be a bit of an issue thanks to the fact that plants also reproduce vegetatively. Large mouse plant populations are often made up of clones of a single individual. This may be why rates of sexual reproduction in the wild are often as low as 10 - 20%. Still, it must work some of the time otherwise how would such a sophisticated form of pollination syndrome evolve in the first place.

Photo Credit: [1] [2] [3]

Further Reading: [1] [2]