North America's Climbing Fern

13662300_1415614875132040_573942899201136262_o.jpg

There are few things on a hike that get me pumped more than hearing someone call out "Hey, I found something weird over here!" It's even more exciting when that person knows what they are talking about. Sometimes that "something" is a familiar species in a strange spot, or growing in a strange way. Sometimes, however, it is something new and exciting that you have been wanting to encounter for years.

This is how I finally met the American climbing fern (Lygodium palmatum). Tangled among the branches of a shrub was indeed a strange site. The tiny, palmate pinnules are not a dead giveaway as to its true identity. Regardless of looks, this is in fact a fern. It is the only member of this genus native to North America. Its cousins, the Japanese climbing fern (Lygodium japonicum) and the Old World climbing fern (Lygodium microphyllum) can also be found on this continent but they have become very invasive in the southeast.

26025855_10101801675025885_8893236139194094503_o.jpg

I know what some of you may be thinking, "if this is a fern then where are the fronds?" This was my first thought as well. My first guess was aimed at each palmate leaf. Wrong. The correct answer is the whole vine! Each climbing vine of this fern is a single frond. The palmate leaves are actually the pinnules. The stem, or rachis as it is called in ferns, twines around branches and stems in a vine-like fashion, unfurling pinnules as it goes. What is most impressive is that these fronds can grow as long as 15 feet. Quite impressive by North American fern standards. Fertile pinnules form at the ends of these fronds. Their lacy appearance is quite beautiful juxtaposed with the hand-like, sterile pinnules.

The American climbing fern can be found growing throughout eastern North America. It is a fern of wet places, enjoying acidic soils and bright sunlight. Unfortunately its preference for wetlands has landed it on threatened and endangered lists throughout its range. Our nasty habit of draining, farming, and developing wetlands means that the American climbing fern (as well as many of the other species it shares its habitat with) is losing habitat at an alarming rate.

Further Reading:
http://plants.usda.gov/core/profile?symbol=LYPA3

Peculiar Pillworts

Photo by Christian Fischer licensed by CC BY-SA 3.0

Photo by Christian Fischer licensed by CC BY-SA 3.0

As far as ferns are concerned, the pillworts are pretty unusual. Belonging to the genus Pilularia, there are something like 3 to 6 species depending who you ask. To find them, you need to have an eye for detail and be looking in the right kind of habitats. Pillworts won’t grow just anywhere, which is of growing concern for one species. Today I would like to give you a brief introduction to these peculiar semi-aquatic ferns.

Pillworts really challenge the notion of what a fern should look like. Instead of feathery fronds, pillworts produce narrow, grass-like leaves. Look closely and you will see that these leaves do in fact unfurl in fiddlehead fashion from a long stolon. Situated at the base of the leaves are small, hairy capsules called sporocarps, which house the spores. When presented with favorable growing conditions, pillworts can form large, creeping mats that resemble a shaggy lawn.

Pilularia_globulifera_-_Thomé.jpg

No matter where you find them, pillworts largely require the same types of habitats to prosper. These tiny ferns are specialists on muddy banks of seasonal ponds. You see, pillworts simply cannot compete with more aggressive vegetation. For them to thrive, pond conditions must be maintained in an early successional state. The ideal pond for a pillwort fills with water during the winter and largely dries down to mud in the summer. Such fluctuations in water levels keeps competing vegetation at bay. Fully aquatic plants quickly dry out in the summer whereas more terrestrial species drown in the winter. In places like Europe, where Pilularia globulifera is native, grazing by large herbivores such as cattle play a big role as well. As cattle eat up and trample the vegetation around seasonal ponds, they create bare ground where pillworts can thrive.

One of the biggest threats to pillworts is pollution. As runoff from farms and residential areas dump massive quantities of nitrogen and phosphorus into the water, more aggressive plants start to take hold. As this happens, pillworts simply can’t keep up. The degradation and loss of seasonal ponds is causing severe declines in pillwort populations in Europe. Though Pilularia globulifera is still listed as a species of least concern, the rate at which it is being lost from its historical range is enough to place it on the watch list of many conservation organizations.

Photo by Sam Thomas licensed by CC BY-NC-SA 2.0

Photo by Sam Thomas licensed by CC BY-NC-SA 2.0

Outside of the UK, pillworts are receiving much less attention. Little information exists on pillworts growing in Australia and New Zealand, and there is ongoing debate as to whether North American populations represent a single species or two distinct, albeit cryptic species. Such lack of attention and confusion coupled with its inconspicuous appearance could be bad news for this tiny plant. Without proper assessments of what species occur where and their relative abundance, few conservation measures can be put into place. What we can say for sure is that to protect pillworts, we must protect their habitat.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3] [4]

The Wacky World of Whisk Ferns

Photo by Richard Droker licensed under CC BY-NC-ND 2.0

Photo by Richard Droker licensed under CC BY-NC-ND 2.0

The whisk ferns (Psilotum spp.) are a peculiar group of plants. If you hang out in greenhouses long enough, you are most likely to encounter them as “weeds” growing in pots with other plants. Though they aren’t often put on display by themselves, the whisk ferns are certainly worth a closer look.

Psilotum comprises two species, the far more common Psilotum nudum and the lesser known P. complanatum. These two species will also hybridize, resulting in Psilotum × intermedium. Together, the whisk ferns make up one of only two genera in the family Psilotaceae (the other being Tmesipteris). They are strange plants to look at as there doesn’t appear to be much to them besides stems. Indeed, their peculiar morphology has earned them a fair share of taxonomic attention over the last century but before we get into that, it is a good idea to take a closer look at their anatomy.

Psilotum nudum with yellow sporagia. Photo by Mary Keim licensed under CC BY-NC-SA 2.0

Psilotum nudum with yellow sporagia. Photo by Mary Keim licensed under CC BY-NC-SA 2.0

What we see when we are looking at a whisk fern is the sporophyte generation. Like all sporophytes, its job is to produce the spores that will go on to make new whisk ferns. This part of the whisk fern lifecycle is pretty much all stem. Though these are in fact vascular plants, they do not produce true leaves. Instead, the branching stem takes up all of the photosynthetic work. What looks like tiny leaf-like scales are actually referred to as ‘enations.’ These structures do not contain any vascular tissue of their own. Instead, they bear a type of fused sporangia that house the spores. When mature, these will turn a bright yellow.

Underground, things aren’t much different. Whisk ferns produce a branching rhizome that is covered in hair-like projections called rhizoids. These structures not only help anchor the plant in place, they also function in a similar way to roots. Rhizoids interface with the soil environment allowing the plant to absorb nutrients and water. However, they don’t do this alone. Like so many other plants, whisk ferns partner with mycorrhizal fungi, which vastly increases the amount of surface area these plants have for absorbing what they need. In return, whisk ferns provide the fungi with carbohydrates they produce through photosynthesis. As lovely as this mutualistic relationship sounds, it actually starts off as parasitism.

A Psilotum rhizome with hair-like rhizoids. Photo by Curtis Clark licensed under CC BY-SA 3.0

A Psilotum rhizome with hair-like rhizoids. Photo by Curtis Clark licensed under CC BY-SA 3.0

When the spores find a suitable place to germinate, they will grow into the other half of the whisk fern lifecycle, the gametophyte. These resemble tiny versions of the rhizome and contain male and female reproductive organs. Living underground, the gametophytes do not photosynthesize. Instead, they completely rely on mycorrhizal fungi for all of their nutritional needs. This can go on for some time until the gametophytes are fertilized and grow a new sporophyte. Then and only then will the plant actually start giving back to the fungi that their lives depend on.

Psilotum complanatum with its flattened stems. Photo by Chad Husby licensed under CC BY-NC-ND 2.0

Psilotum complanatum with its flattened stems. Photo by Chad Husby licensed under CC BY-NC-ND 2.0

Because the overall form of the whisk ferns appears so “simplistic.,” many have hypothesized that the genus Psilotum is an evolutionary throwback to the early days of vascular plant evolution. On a superficial level, the whisk ferns do appear to have a lot in common with rhyniophytes, a group of plants that arose during the early Devonian, some 419 to 393 million years ago. A more detailed inspection of the anatomy of each group would reveal that there are some significant and fundamental differences between the two lineages, which I won’t go into here. Also, subsequent molecular work has shown that the whisk ferns reside quite comfortably within the fern lineage and likely represent a sister group to the order that gives us the adder’s tongue ferns (Ophioglossales). It would appear that whisk ferns more accurately represent a reduction in the more “traditional” fern form rather than a holdover from the early days of land plant evolution.

What the genus Psilotum lacks in number of species, it makes up for with its wide distribution. The whisk ferns seem to have conquered most of the tropical and subtropical landmasses on our planet. In fact, I found it incredibly difficult to discern much in the way of a native distribution for these plants. In some areas they are fairly common components of the local flora whereas in others they are considered rare or even threatened. I am sure that at least some of their expansive distribution can be attributed to human assistance as we move soils and plants around the world. To find them in nature, one must look in the cracks of rocks or on the trunks and branches of trees. Though both species can be found growing on trees, P. complanatum in particular seems to prefer an epiphytic lifestyle.

Psilotum complanatum (left) and Psilotum nudum (right) growing epiphytically. Photo by David Eickhoff licensed under CC BY 2.0

Psilotum complanatum (left) and Psilotum nudum (right) growing epiphytically. Photo by David Eickhoff licensed under CC BY 2.0

Whether you grow them on purpose, fight them as a greenhouse “weed,” or track them down in the wild, I hope you take a moment to appreciate these oddball plants. The whisk ferns are intriguing to say the least and certainly offer up a unique conversation piece for anyone curious about the botanical world. They are a genus worth admiring.

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4]

Süßwassertang: A Fern Disguised as a Liverwort

Photo by Rǫgn licensed under CC BY-SA 4.0

Photo by Rǫgn licensed under CC BY-SA 4.0

If you enjoy planted aquariums, you may have crossed paths with a peculiar little plant called Süßwassertang. It can be propagated by breaking off tiny pieces, which eventually grow into a tangled carpet of tiny green thalli. One could be excused for thinking that Süßwassertang was some sort of liverwort and indeed, for quite some time was marketed as such. That all changed in 2009 when it was revealed that this was not a liverwort at all but rather the gametophyte of a fern.

Despite its German name, Süßwassertang appears to have originated in tropical parts of Africa and Asia. It is surprisingly hard to find out any information about this plant outside of its use in the aquarium trade. The name Süßwassertang translates to “freshwater seaweed” and indeed, that is exactly what it looks like. The fact that this is actually the gametophyte of a fern may seem startling at first but when you consider what they must deal with in nature, the situation makes a bit more sense.

A Süßwassertang gametophyte. B An antheridium, showing a cap cell (cc), ring cell (rc), and basal cell (bc). Bar: 20 µm. C Developing lateral branches with rhizoids (arrowhead) and meristems (m) Bar: 0.2 mm. D Ribbon-like, branched gametophyte (g) o…

A Süßwassertang gametophyte. B An antheridium, showing a cap cell (cc), ring cell (rc), and basal cell (bc). Bar: 20 µm. C Developing lateral branches with rhizoids (arrowhead) and meristems (m) Bar: 0.2 mm. D Ribbon-like, branched gametophyte (g) of L. spectabilis bearing a young sporophyte (sp) Bar: 1 cm

Fern gametophytes are surprisingly hardy considering their small size and delicate appearance. They are amazing in their ability to tolerate harsh conditions like drought and freezing temperatures. Because of this, fern gametophytes sometimes establish themselves in places that would be unfavorable for their sporophyte generation. For some, this means never completing their lifecycle. Others, however, seem to have overcome the issue by remaining in their gametophyte stage forever. Though no sexual reproduction occurs for these permanent gametophytes, they nonetheless persist and reproduce by breaking off tiny pieces, which grow into new colonies.

The sporophyte of a related species, Lomariopsis marginata, demonstrating the usual epiphytic habit of this genus. Photo by Alex Popovkin, Bahia, Brazil licensed under CC BY-NC-SA 2.0

The sporophyte of a related species, Lomariopsis marginata, demonstrating the usual epiphytic habit of this genus. Photo by Alex Popovkin, Bahia, Brazil licensed under CC BY-NC-SA 2.0

This appears to be the case for Süßwassertang. Amazingly, despite a few attempts, no sporophytes have ever been coaxed from any gametophyte. It would appear that this is yet another species that has given up its sporophyte phase for an entirely vegetative habit. What is most remarkable is what the molecular work says about Süßwassertang taxonomically. It appears that this plant its nestled into a group of epiphytic ferns in the genus Lomariopsis. How this species evolved from vine-like ferns living in trees to an asexual colony of aquatic gametophytes is anyones’ guess but it is an incredible jump to say the least.

Photo Credits: [1] [2] [3]

Further Reading: [1]

Celebrating the Forked Spleenwort

Photo by Bernd Haynold licensed under CC BY-SA 3.0

Photo by Bernd Haynold licensed under CC BY-SA 3.0

What can I say, I am a total sucker for ferns with "untraditional" fronds. Whereas the tropics offer seemingly endless fern varieties, I find that there is something special about temperate ferns that, for lack of a better phrase, break the mold. I was recently introduced to such a fern. Known commonly as the forked spleenwort, Asplenium septentrionale looks more like a clump of grass than it does a fern.

A closer inspection, however, would reveal that it is indeed a Pteridophyte. It grows on rocky outcrops, including stone walls, throughout the northern hemisphere. Here in North America, it is predominantly found in the Rocky Mountains. It is a small fern that often forms dense clusters in cracks and crevices. Its stems are long, narrow, and grass-like, ending in a flattened leaf blade that often forks at the tip. In typical fractal fashion, these leaf blades fork again at the tips, forming minute pinnae.

Photo by Rolf Engstrand licensed under CC BY-SA 3.0

Photo by Rolf Engstrand licensed under CC BY-SA 3.0

The forked spleenwort has gone through considerable taxonomic revisions since it was first described by Linnaeus in 1753. Originally it was named Acrostichum septentrionale, but was then moved into Asplenium a few decades later. Renewed interest in this species during the mid 20th century saw the forked spleenwort moved to the genus Chamaefilix followed by Tarachia, though these did not gain much scientific credence. As such, it has remained an Asplenium ever since.

Its taxonomic story does not end there, however, as genetic tests soon revealed that a much more subtle and nuanced revision was worth considering. It was discovered that the forked spleenwort existed in two genetically distinct types, a diploid (having two sets of chromosomes) and a tetraploid (having four sets of chromosomes). Researchers found that each group had its own distinct distribution with the diploids centered in southwest Asia and the tetraploids being circumboreal.

Photo by Bernd Haynold licensed under CC BY-SA 1.0

Photo by Bernd Haynold licensed under CC BY-SA 1.0

It was clear that a subspecies division was worth considering. Further investigations in the early 2000's revealed the presence of sterile triploid individuals that are believed to be hybrids of the two mentioned above. What's more, the forked spleenwort has been found to hybridize with other members of its genus. It is believed that the more isolated populations owe their existence in part to the isolation of their preferred substrate - these ferns do best on acidic substrates where competition is low - and decent longevity. It has been speculated that genetic differences can be maintained when "mutant" individuals become established and persist undisturbed for long periods of time.  

Regardless of its taxonomic status, the forked spleendwort is nonetheless a charismatic little species. A simple image search will reveal just how pleasant this species is in situ. Even better, its beauty and splendor can be shared by botanical enthusiasts throughout the northern hemisphere. There is something to be said about such species.

Photo Credits: [1] [2] [3]

Further Reading: [1]

Ferns Afloat

Photo by Le.Loup.Gris licensed under CC BY-SA 3.0

Photo by Le.Loup.Gris licensed under CC BY-SA 3.0

My introduction to the genus Salvinia was as an oddball aquarium plant floating in a display tank at the local pet store. I knew nothing about plants at the time but I found it to be rather charming nonetheless. Every time the green raft of leaves floated under the filter outlet, water droplets would bead off them like water off of a ducks back. Even more attractive were the upside down forest of "roots" which were actively sheltering a bunch of baby guppies. 

I grew some Salvinia for a few years before my interest in maintaining aquariums faded. I had forgotten about them for quite some time. Much later as I was diving into the wild world of botany, I started revisiting some of the plants that I had grown in various aquariums to learn more about them. It wasn't long before the memory of Salvinia returned. A quick search revealed something astonishing. Salvinia are not flowering plants. They are ferns! 

The genus Salvinia is wide spread. They can be found growing naturally throughout North, Central, and South America, the West Indies, Europe, Africa, and Madagascar. Sadly, because of their popularity as aquarium and pond plants, a few species have become extremely aggressive invaders in many water ways. More on that in a bit. 

Salvinia comprises roughly 12 different species. Of these, at least 4 are suspected to be naturally occurring hybrids. As you have probably already gathered, these ferns live out their entire lives as floating aquatic plants. Their most obvious feature are the pairs of fuzzy green leaves borne on tiny branching stems. These leaves are covered in trichomes that repel water, thus keeping them dry despite their aquatic habit. 

These are not roots! Photo by Carassiuslike licensed under CC BY-SA 4.0

These are not roots! Photo by Carassiuslike licensed under CC BY-SA 4.0

Less obvious are the other types of leaves these ferns produce. What looks like roots dangling below the water's surface are actually highly specialized, finely dissected leaves! I was super shocked to learn this and to be honest, it makes me appreciate these odd little ferns even more. It is on those underwater leaves that the spores are produced. Specialized structures called sporocarps form like tiny nodules on the tips of the leaf hairs.

Sporocarps come in two sizes, each producing its own kind of spore. Large sporocarps produce megaspores while the smaller sporocarps produce microspores. This reproductive strategy is called heterospory. Microspores germinate into gametophytes containing male sex organs or "antheridia," whereas the megaspores develop into gametophytes containing female sex organs or "archegonia." 

As I mentioned above, some species of Salvinia have become aggressive invaders, especially in tropical and sub-tropical water ways. Original introductions were likely via plants released from aquariums and ponds but their small spores and vegetative growth habit means new introductions occur all too easily. Left unchecked, invasive Salvinia can form impenetrable mats that completely cover entire bodies of water and can be upwards of 2 feet thick!

Sporocarps galore! Photo by Kenraiz licensed under CC BY-SA 4.0

Sporocarps galore! Photo by Kenraiz licensed under CC BY-SA 4.0

Lots of work has been done to find a cost effective way to control invasive Salvinia populations. A tiny weevil known scientifically as Cyrtobagous singularis has been used with great success in places like Australia. Still, the best way to fight invasive species is to prevent them from spreading into new areas. Check your boots, check your boats, and never ever dump your aquarium or pond plants into local water ways. Provided you pay attention, Salvinia are rather fascinating plants that really break the mold as far as most ferns are concerned. 

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3]

 

Tropical Ferns in Temperate North America

All plants undergo some form of alternation of generations. It is the process in which, through reproduction, they cycle between a haploid gametophyte stage and a diploid sporophyte stage. In ferns and lycophytes, this alternation of generations has been taken to the extreme. Instead of the sporophyte relying on the gametophyte for sustenance, the two generations are physically independent and thus separated from one another. In a handful of fern genera here in North America, this has led to some intriguing and, dare I say, downright puzzling distributions.

The presence of a small handful of tropical fern genera in temperate North America has generated multiple scientific investigations since the early 1900's. However, as is constantly happening in science, as soon as we answer one question, seemingly infinite more questions arise. At the very least, the presence of these ferns in temperate regions offers us a tantalizing window into North America’s ancient past.

To say any of these ferns offer the casual observer much to look at would be a bit of an exaggeration. They do not play out their lives in typical fern fashion. These out-of-place tropical ferns exists entirely as asexual colonies of gametophytes, reproducing solely by tiny bundles of cells called gemmae. What's more, you will only find them tucked away in the damp, sheltered nooks and crannies of rocky overhangs and waterfalls. Buffered by unique microclimates, it is very likely that these fern species have existed in these far away corners for a very, very long time. The last time their respective habitats approached anything resembling a tropical climate was over 60 million years ago. Some have suggested that they have been able to hang on in their reduced form for unthinkable lengths of time in these sheltered habitats. Warm, wet air gets funneled into the crevices and canyons where they grow, protecting them from the deep freezes so common in these temperate regions. Others have suggested that their spores blew in from other regions around the world and, through chance, a few landed in the right spots for the persistence of their gametophyte stages.

The type of habitat you can expect to find these gametophytes.

Aside from their mysterious origins, there is also the matter of why we never find a mature sporophyte of any of these ferns. At least 4 species in North America are known to exist this way - Grammitis nimbata, Hymenophyllum tunbridgense, Vittaria appalachiana, and a member of the genus Trichomanes, most of which are restricted to a small region of southern Appalachia. In the early 1980's, an attempt at coaxing sporophyte production from V. appalachiana was made. Researchers at the University of Tennessee brought a few batches of gametophytes into cultivation. In the confines of the lab, under strictly controlled conditions, they were able to convince some of the gametophytes to produce sporophytes. As these tiny sporophytes developed, they were afforded a brief look at what this fern was all about. It confirmed earlier suspicions that it was indeed a member of the genus Vittaria, or as they are commonly known, the shoestring ferns. The closest living relative of this genus can be found growing in Florida, which hints at a more localized source for these odd gametophytes. However, both physiology and subsequent genetic analyses have revealed the Appalachian Vittaria to be a distinct species of its own. Thus, the mystery of its origin remains elusive.

In order to see them for yourself, you have to be willing to cram yourself into some interesting situations. They really put the emphasis on the "micro" part of the microclimate phenomenon. Also, you really have to know what you are looking for. Finding gametophytes is rarely an easy task and when you consider the myriad other bryophytes and ferns they share their sheltered habitats with, picking them out of a lineup gets all the more tricky. Your best bet is to find someone that knows exactly where they are. Once you see them for the first time, locating other populations gets a bit easier. The casual observer may not understand the resulting excitement but once you know what you are looking at, it is kind of hard not to get some goosebumps. These gametophyte colonies are a truly bizarre and wonderful component of North American flora.


Photo Credit: [1] [2]

Further Reading: [1] [2] [3] [4]

The Mighty 'Ama'u

Photo by Forest Starr and Kim Starr licensed under CC BY 2.0

Photo by Forest Starr and Kim Starr licensed under CC BY 2.0

We tend to think of ferns as fragile plants, existing in the shaded, humid understories of forests. This could not be farther from the truth. Their lineage arose on this planet some 360 million years ago and has survived countless extinctions. In truth, they exhibit a staggering array of lifestyles, each with its own degree of adaptability. Take the Hawaiian tree fern, Sadleria cyatheoides for example.

Known in Hawai'i as the 'Ama'u, this tree fern is one of the first species to colonize the barren lava flows that make the Big Island so famous. This is an incredibly harsh landscape and many challenges must be overcome in order to persist. This does not seem to be an issue for the 'Ama'u. It is just as much at home in these water-starved habitats as it is in wetter forests. It is easily the most successful species in this genus, having colonized every island in the archipelago.

Photo by John Game licensed under CC BY 2.0

Photo by John Game licensed under CC BY 2.0

Much of its success has to due with a part of its life cycle that is much less obvious to us - the gametophyte stage. The tree fern we see is only half of the story. It is the spore-producing phase conveniently referred to as the sporophyte. When a spore finds a suitable site for germination, it grows into the other half of the life cycle, the gametophyte. This minute structure looks like a tiny green heart and it houses the reproductive organs of the plant. When water is present, male gametophytes release their flagellated sperm, which swim around until they find a female gametophyte to fertilize. Once fertilized, the resulting embryos will then grow into a new tree fern and start the cycle anew.

What sets the 'Ama'u apart from its rarer cousins is the fact that its gametophyte appears to be quite capable of both outcrossing and self-fertilization. Outcrossing, of course, promotes genetic diversity, however, the ability to self-fertilize means that a new plant can grow from only a single spore. This is super advantageous when it comes to colonizing new habitats. Its cousins seem to lack this ability to self-fertilize successfully, restricting them to more localized areas. Taken together, I think it's safe to say that the 'Ama'u is one tough cookie. 

Photo Credits: [1] [2]

Further Reading: [1] [2]

 

Ferns Unchanged

Ferns are old. Arising during the late Devonian period, some 360 million years ago, ferns once dominated the land. These ancient ferns were a bit different than the ferns we know today. It wasn't until roughly 145 million years ago, during the late Cretaceous period, that many extant fern families started to appear. However, a recent fossil discovery shows that at least one familiar fern was hanging out with dinosaurs as far back as 180 million years ago!

A team of scientists in Sweden recently unearthed an exquisitely preserve fossil of a fern from some early Jurassic deposits. Usually the fossilization process does not preserve very fine details, especially not at the cellular level, but that is not the case for this fossil. Falling into volcanic hydrothermal brine, the fern quickly mineralized. The speed at which the tissues of the fern were replaced by minerals preserved details that paleontologists usually only dream about. Clearly visible in the fossilized stem are subcellular structures like nuclei and even chromosomes in various stages of cell division!

 

A) Section of the fossil rhizome. B-J) Exquisitely preserve cellular details [SOURCE]

A) Section of the fossil rhizome. B-J) Exquisitely preserve cellular details [SOURCE]

Using sophisticated microscopy techniques, the team was able to analyze the properties of the nuclei undergoing division. What they discovered is simply amazing. The number of chromosomes as well as other properties of the DNA matched a fern that is quite common in eastern North America and Asia today. This fossilized fern, as far as the team can tell, is a close relative of the cinnamon fern (Osmundastrum cinnamomeum), placing it in the royal fern family (Osmundaceae). Based on the fossil evidence, relatives of these ferns were not only around during the early Jurassic, they have remained virtually unchanged for 180 million years. Talk about living fossils!

Further Reading: [1] [2]

Important Lessons From Ascension Island

Located in the middle of the South Atlantic, Ascension Island is probably not on the top of anyone's travel list. This bleak volcanic island doesn't have much to offer the casual tourist but what it lacks in amenities it makes up for in a rich and bizarre history. Situated about 2,200 km east of Brazil and 3,200 km west of Angola, this remote island is home to one of the most remarkable ecological experiments that is rarely talked about. The roots of this experiment stem back to a peculiar time in history and the results have so much to teach the human species about botany, climate, extinction, speciation, and much more. What follows is not a complete story; far from it actually. However, my hope is that you can take away some lessons from this and, at the very least, use it as a jumping off point for future discussions. 

Ascension Island is, as land masses go, quite young. It arose from the ocean floor a mere 1 million years ago and is the result of intense volcanic activity. Estimates suggest that volcanism was still shaping this island as little as 1000 years ago. Its volcanic birth, young age, isolated conditions, and nearly non-existent soils meant that for most of its existence, Ascension Island was a depauperate place. It was essentially a desert island. Early sailors saw it as little more than a stopover point to gather turtles and birds to eat as they sailed on to other regions. It wasn't until 1815 that any permanent settlements were erected on Ascension. 

Photo by Drew Avery licensed under CC BY 2.0

Photo by Drew Avery licensed under CC BY 2.0

In looking for an inescapable place to imprison Napoleon Bonaparte, the Royal Navy claimed Ascension in the name of King George III. Because Napoleon had a penchant for being an escape artist, the British decided to build a garrison on the island in order to make sure Napoleon would not be rescued. In doing so, the limitations of the island quickly became apparent. There were scant soils in which to grow vegetables and fresh water was nearly nonexistent. 

The native flora of Ascension was minimal. It is estimated that, until the island was settled, only about 25 to 30 plant species grew on the island. Of those 10 (2 grasses, 2 shrubs, and 6 ferns) were considered endemic. If the garrison was to persist, something had to be done. Thus, the Green Mountain garden was established. British marines planted this garden at an elevation of roughly 2000 feet. Here the thin soils supported a handful of different fruits and vegetables. In 1836, Ascension was visited by a man named Charles Darwin. Darwin took note of the farm that had developed and, although he admired the work that was done in making Ascension "livable" he also noted that the island was "destitute of trees."

One of Ascension Island's endemic ferns - Pteris adscensionis. Photo by Drew Avery licensed under CC BY 2.0

One of Ascension Island's endemic ferns - Pteris adscensionis. Photo by Drew Avery licensed under CC BY 2.0

Others shared Darwin's sentiment. The prevailing view of this time period was that any land owned by the British empire must be transformed to support people. Thus, the wheels of 'progress' turned ever forward. Not long after Darwin's visit, a botanist by the name of Joseph Hooker paid a visit to Ascension. Hooker, who was a fan of Darwin's work, shared his sentiments on the paucity of vegetation on the island. Hooker was able to convince the British navy that vegetating the island would capture rain and improve the soil. With the support of Kew Gardens, this is exactly what happened. Thus began the terraforming of Green Mountain.

Photo by LordHarris licensed under CC BY-SA 3.0

Photo by LordHarris licensed under CC BY-SA 3.0

For about a decade, Kew shipped something to the tune of 330 different species of plants to be planted on Ascension Island. The plants were specifically chosen to withstand the harsh conditions of life on this volcanic desert in the middle of the South Atlantic. It is estimated that 5,000 trees were planted on the island between 1860 and 1870. Most of these species came from places like Argentina and South Africa. Soon, more plants and seeds from botanical gardens in London and Cape Town were added to the mix. The most incredible terraforming experiment in the world was underway on this tiny volcanic rock. 

By the late 1870's it was clear the the experiment was working. Trees like Norfolk pines (Araucaria heterophylla), Eucalyptus spp. and figs (Ficus spp.), as well as different species of banana and bamboo had established themselves along the slopes of Green Mountain. Where there was once little more than a few species of grass, there was now the start of a lush cloud forest. The vegetation community wasn't the only thing that started to change on Ascension. Along with it changed the climate. 

Photo by Drew Avery licensed under CC BY 2.0

Photo by Drew Avery licensed under CC BY 2.0

Estimates of rainfall prior to these terraforming efforts are sparse at best. What we have to go on are anecdotes and notes written down by early sailors and visitors. These reports, however, paint a picture of astounding change. Before terraforming began, it was said that few if any clouds ever passed overhead and rain rarely fell. Those living on the island during the decade or so of planting attested to the fact that as vegetation began to establish, the climate of the island began to change. One of the greatest changes was the rain. Settlers on the island noticed that rain storms were becoming more frequent. Also, as one captain noted "seldom more than a day passes over now without a shower or mist on the mountain." The development of forests on Ascension were causing a shift in the island's water cycle. 

Plants are essentially living straws. Water taken up by the roots travels through their tissues eventually evaporating from their leaves. The increase in plant life on the island was putting more moisture into the air. The humid microclimate of the forest understory cooled the surrounding landscape. Water that would once have evaporated was now lingering. Pools were beginning to form as developed soils retained additional moisture.

Photo by Ben Tullis licensed under CC BY 2.0

Photo by Ben Tullis licensed under CC BY 2.0

Now, if you are anything like me, at this point you must be thinking to yourself "but what about the native flora?!" You have every right to be concerned. I don't want to paint the picture that everything was fine and dandy on Ascension Island. It wasn't. Even before the terraforming experiment began, humans and other trespassers left their mark on the local biota. With humans inevitably comes animals like goats, donkeys, pigs, and rats. These voracious mammals went to work on the local vegetation. The early ecology that was starting to develop on Ascension was rocked by these animals. Things were only made worse when the planting began.

Of the 10 endemic plants native to Ascension Island, 3 went extinct, having been pushed out by all of the now invasive plant species brought to the island. Another endemic, the Ascension Island parsley fern (Anogramma ascensionis) was thought to be extinct until four plants were discovered in 2010. The native flora of Ascension island was, for the most part, marginalized by the introduction of so many invasive species. This fact was not lost of Joseph Hooker. He eventually came to regret his ignorance to the impacts terraforming would have on the native vegetation stating “The consequences to the native vegetation of the peak will, I fear, be fatal, and especially to the rich carpet of ferns that clothed the top of the mountain when I visited it." Still, some plants have adapted to life among their new neighbors. Many of the ferns that once grew terrestrially, can now be found growing epiphytically among the introduced trees on Green Mountain. 

The Ascension Island parsley fern (Anogramma ascensionis). Photo by Ascension Island Government Conservation Department licensed under CC BY-SA 3.0

The Ascension Island parsley fern (Anogramma ascensionis). Photo by Ascension Island Government Conservation Department licensed under CC BY-SA 3.0

Today Ascension Island exists as a quandary for conservation ecologists. On the one hand the effort to protect and conserve the native flora and fauna of the island is of top priority. On the other hand, the existence of possibly the greatest terraforming effort in the world begs for ecological research and understanding. A balance must be sought if both goals are to be met. Much effort is being put forth to control invasive vegetation that is getting out of hand. For instance, the relatively recent introduction of a type of mesquite called the Mexican thorn (Prosopis juliflora) threatens the breeding habitat of the green sea turtle. Efforts to remove this aggressive species are now underway. Although it is far too late to reverse what has been done to Ascension Island, it nonetheless offers us something else that may be more important in the long run: perspective.

If anything, Ascension Island stands as a perfect example of the role plants play in regulating climate. The introduction of these 330+ plant species to Ascension Island and the subsequent development of a forest was enough to completely change the weather of that region. Where there was once a volcanic desert there is a now a cloud forest. With that forest came clouds and rain. If adding plants to an island can change the climate this much, imagine what the loss of plants from habitats around the world is doing. 

Each year an estimated 18 million acres of forest are lost from this planet. As human populations continue to rise, that number is only going to get bigger. It is woefully ignorant to assume that habitat destruction isn't having an influence on global climate. It is. Plants are habitat and when they go, so does pretty much everything else we hold near and dear (not to mention require for survival). If the story of Ascension does anything, I hope it serves as a reminder of the important role plants play in the function of the ecosystems of our planet. 

The endemic Ascension spurge (Euphorbia origanoides). Photo by Drew Avery licensed under CC BY 2.0

The endemic Ascension spurge (Euphorbia origanoides). Photo by Drew Avery licensed under CC BY 2.0

Photo by DCSL licensed under CC BY-NC 2.0

Photo by DCSL licensed under CC BY-NC 2.0

Photo Credits: [1] [2] [3] [4] [5] [6] [7] [8]

Further Reading: [1] [2] [3]

 

Floating Ferns

Photo by Jon Sullivan licensed under CC BY-NC 2.0

Photo by Jon Sullivan licensed under CC BY-NC 2.0

Not every tiny plant you see growing on the surface of ponds are duckweeds. Sometimes they are Azolla. Believe it or not, these are tiny, floating ferns! The genus Azolla is comprised of about 7 to 11 different species, all of which are aquatic. Despite being quite small they nonetheless exert a massive influence wherever they grow. 

Like all ferns, Azolla reproduce via spores. Unlike more familiar ferns, however, sexual reproduction in Azolla consists of two markedly different types of spores. When conditions are right, little structures called "sporocarps" are formed underneath the branches. These produce one of two types of sporangia. Male sporangia are small and are often referred to as microspores whereas female sporangia are, relatively speaking, quite large and are referred to as megaspores. The resulting gametophytes develop within and never truly leave their respective spores. Instead, male gameotphytes release motile sperm into the water column and female gametophytes peak out of the megaspore to intercept them. Thus, fertilization is achieved. 

Photo by Miguel Pérez licensed under CC BY-SA 2.0

Photo by Miguel Pérez licensed under CC BY-SA 2.0

Azolla are fast growing plants. Via asexual reproduction, these little floating ferns can double their biomass every 3 to 10 days. That is a lot of plant matter in a short amount of time. As such, entire water bodies quickly become smothered by a fuzzy-looking carpet. Depending on the species and the environmental conditions, the color of this carpet can range from deep green to nearly burgundy. They are able to float because of their overlapping scale-like leaves, which trap air. Below each plant hangs a set of roots. The roots themselves form a symbiotic relationship with a type of cyanobacterium, which fixes atmospheric nitrogen. Couple with their astronomic growth rate, this means that colonies of Azolla quickly reach epic proportions.

In fact, they can grow so fast that Azolla may have played a serious role in a massive global cooling event that occurred some 50 million years ago. During that time, Earth was much warmer than it is now. Global temperatures were so warm that tropical species such as palms grew all the way into the Arctic. There is fossil evidence that massive blooms of Azolla may have occurred in the Arctic Ocean during this time, which was a lot less saline than it is now.

Everything red in this picture is Azolla. Photo by Jon. D. Anderson licensed under CC BY-NC-ND 2.0

Everything red in this picture is Azolla. Photo by Jon. D. Anderson licensed under CC BY-NC-ND 2.0

Though plenty of other factors undoubtedly played a role, it is believed that Azolla blooms would have been so large that they would have drawn down CO2 levels considerably over thousands of years. As these blooms died they sank to the sea floor, bringing with them all of the carbon they had locked up in their cells. In part, this may have led to a massive drop in atmospheric CO2 levels and led to a subsequent cooling period. Evidence for this is tantalizing, so much so that some researchers have taken to calling this "The Azolla Event." However, this is far from a smoking gun. Regardless, it is an important reminder than really big things often come in very small packages.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2]

 

Fern Ant Farm

An epiphytic lifestyle is no walk in the park. Baking sun, drying winds, and a lack of soil are the norm. As a result, epiphytic plants exhibit numerous adaptations for retaining water and obtaining nutrients. One of the most interesting adaptations to this lifestyle can be seen in plants that have struck up a relationship with ants.

An amazing example of one such relationship can be seen in a genus of epiphytic ferns called Lecanopteris. Native to Southeast Asia and New Guinea, their unique look is equally matched by their unique ecology. Using a highly modified rhizome, they are able to latch on to the branch of a tree. In species such as Lecanopteris mirabilis (pictured above), it's as if the fronds are emerging from a strange green amoeba.

However, it's whats going on underneath their strange rhizomes that makes this group so fascinating. These ferns literally grow ant farms. Chambers and middens within the amorphous rhizome entice colonies of ants to set up shop. In return for lodging, the ants provide protection. Anything looking to take a bite out of a frond must contend with an army of angry ants. Moreover, the ants provide valuable nutrients in the form of waste and other detritus.

These are by no means the only plants to have evolved a relationship of this sort. Myriad plant species utilize ants for protection, nutrient acquisition, and seed dispersal. It has even been suggested that the unique morphology of Lecanopteris spores is an adaptation for ant dispersal. Certainly one can imagine how that would come into play. Interestingly enough, this group of ferns has attracted the attention of plant enthusiasts looking for a unique plant to grow in their home. As such, you can now find many different species of Lecanopteris being cultivated for the horticultural trade.

Photo Credit: Ch'ien C. Lee (www.wildborneo.com.my/photo.php?f=cld1505721.jpg)

Further Reading: [1] [2] [3] [4]

An Awesome Ophioglossum


Sometimes I wonder how I must look to casual hikers. There I was sprawled out next to the trail, focusing all of my attention on a nondescript patch of leaves poking up where the trail ended and the grass began. This wasn't just any sort of leaf though. The object of my attention was an ancient member of the fern lineage commonly referred to as an adder's tongue. I will gladly look like a weirdo if it means spending time in the presence of such a cool plant. 

To be more specific, the species in question here is the southern adder's tongue (Ophioglossum pychnostichum). Though not overtly showy like its more derived cousins, this little fern is nonetheless quite the show stopper if you know what you're looking for. It is generally considered a grassland associate and is most often encountered growing alongside trails. I'm not sure if this has to do with some disturbance related factor or the fact that even modestly sized plants can overshadow it. 

Regardless, I felt very fortunate to be in the presence of at least one reproductive individual. For much of its life, the southern adder's tongue exists as a gametophyte followed by an underground fleshy rhizome. It can exist in this state for years, being nourished solely by an obligate association with mycorrhizal fungi. When a certain energy threshold is reached, individuals will then produce a single, sterile leaf. This can go on for season after season as the fern slowly stores away nutrients. When enough energy has been stored, mature individuals can then produce a spore bearing structure called a "sporophyll." 

Despite its common name, this particular species distributed throughout the Northern Hemisphere. It can be found growing in North America, Europe, and temperate Asia. Still, since it is such a nondescript little plant, it rarely gets the attention it deserves when it comes to conservation. It is of conservation concern in at least a handful of states. Because its lifecycle can be hard to predict, growing some years and not others, accurate estimates of population size and health can be difficult.

The family to which is belongs is quite interesting on a genetic level as well. Ophioglossaceae is known for having staggeringly large chromosome counts. One species in particular - Ophioglossum reticulatum - boasts a whopping set of 1260 chromosomes. To put that into perspective, we humans only have 46. I guess thats what can happen to a genome that has had millions upon millions of years of natural selection working upon it. 

Further Reading:

http://bit.ly/1SG2srH

http://bit.ly/24izBkD

http://1.usa.gov/1rcWWlU

Finding The Lobed Spleenwort

This is the story of my first encounter with a hybrid fern back in the spring of 2016.

I love exploring geologically diverse areas. The more rock outcroppings the better. You never know what you are going to find in the numerous nooks and crannies, each with their own unique microclimate. This weekend a few of us decided to get out of town for a bit and explore southern Illinois. You can imagine my excitement then when I laid eyes on a rugged terrain filled with ridges and rock outcrops. With only a few days to botanize, I didn't waste any time. 

The woods were alive with early spring ephemerals. Trilliums, Phacelias, Claytonias, and Dicentras filled the forest with a soft pallet of colors. Along the numerous cliff faces I was finding lots of walking ferns already awaking from the mild winter. At one point I found myself following the meandering path of a small stream. Along each side were small cliffs that were carved out of the surrounding bedrock over eons. Their appearance was softened by the myriad species of lichen and moss that carpeted their surfaces. Upon this moss, small ferns and plants are able to take root. My eye kept leaving the creek bed, finding its way along the rocks, looking for anything peculiar that might catch my eye. That's when I saw it. 

Sticking out of a small hole in the rock was an interesting looking fern. At first glance I thought it was another walking fern. Something was off though. It's outline didn't look right and I had to investigate. Its fronds looked lobed. Indeed they were. This was no walking fern but I wasn't ready to jump to conclusions just yet. I pulled out my fern guide in order to confirm my suspicions. 

What I was looking at was a hybrid. Not just any hybrid either. This unique looking little plant is known scientifically as Asplenium pinnatifidum - the lobed spleenwort. I was just lucky enough to be botanizing on the far western portion of its range. Although it is far more prevalent in the Appalachian Mountains, this hybrid is by no means common. I was very lucky to have spotted it.

It is the result of a chance mix between the walking fern (Asplenium rhizophyllum) and the mountain spleenwort (Asplenium montanum). My original inclination towards walking fern wasn't far off. One interesting aspect of this particular hybrids biology is that it is an allotetraploid. Instead of getting one set of chromosomes from each parent (diploid), this little fern gets a full compliment of chromosomes from each, giving it 4 copies total. 

Because it has a lot of functional chromosomes to work with, the lobed spleenwort is fertile. As such, experts have given it the designation of a true species. It can even go on to produce subsequent hybrids. It has been reported to hybridize with other members of the genus Asplenium, however, the offspring produced from these crosses are usually sterile. 

I looked around the area to see if I could find more. In total I only saw two. That's not to say more aren't out there. There are plenty of rock ledges and cliffs that make this region so uniquely beautiful. It is likely that this hybrid fern has unknown populations growing out of reach of watchful eyes. Long may it be that way. 

Further Reading: [1] [2] [3]

Ubiquitous Bracken

Photo by certified su licensed under CC BY 2.0

Photo by certified su licensed under CC BY 2.0

Bracken ferns are a true success story if there ever was one. They occur in temperate and subtropical regions of every continent on the planet except for Antarctica. They very well may be one of the most widely distributed ferns on the planet. In late spring, their unmistakable fiddle heads poke up out of the soil like some sort of alien life-form and quickly unfurl into a giant, beautiful frond.

Known scientifically as Pteridium aquilinum, some authors treat all common bracken fern as a single species. Others feel that the group should be broken up into something like 10 different species. That will be a debate for another day. The fact of the matter is, bracken are very robust plants. As long as they can get enough light, bracken can handle a wide variety of habitat conditions. They thrive on human disturbance and thus are considered rather weedy or even invasive in many habitats.

With ambling rhizomes these plants can rapidly spread to saturate open habitats. Large populations are often referred to as bracken barrens. Their establishment and persistence is aided by the production of allelopathic chemicals, which can limit the establishment of other plants. This is especially true following fires. However, where forests are sparse, dense stands of bracken can actually provide a shaded haven for woodland herbs that would otherwise not be able to establish.

Photo by Thayne Tuason licensed under CC BY-NC 2.0

Photo by Thayne Tuason licensed under CC BY-NC 2.0

Bracken is not only toxic to plants, it is also highly toxic to animals. Bracken produces hydrogen cyanide when young fronds are damaged, quickly poisoning whatever may be munching on the frond. It also contains chemicals that cause uncontrollable rapid molting in insects, leading to a quick demise for any bug unlucky to have fed upon this fern. They also produce a chemcial known as ptaquiloside, which is highly carcinogenic in mammals.

With ample defenses and a hardy disposition, it is easy to see why these ferns are so successful. Coming across a large patch of these plants is, to me, a beautiful sight. It is the ultimate irony that we continue to create the very conditions that cause them rise to invasive status. If anything, they stand as a reminder that we humans are simply part of a greater ecological system, not masters of it.

Photo Credits: Thayne Tuason (http://bit.ly/1JVvfBz) and certified su (http://bit.ly/1FpIYRF)

Further Reading: [1] [2] [3]

Growing Ferns

I am finally having some success intentionally growing ferns from spores. I collected and sowed spores from some interrupted ferns (Osmunda claytoniana) over the summer. They have been hanging out as gametophytes for months now and some are finally starting to grow sporophytes. Here is how it worked for me:

I kept my eye on a batch of adult plants this summer. Once their fertile fronds developed I would flick them every now and then to see if they were releasing spores. Once I saw that they were I shook the fronds over some paper to collect the spores. I then took some old potting soil and sterilized it with boiling distilled water. I use old takeout containers because they are small and have clear lids that form a seal which keeps the humidity high.

Once the soil was cool I sprinkled the spores over it and then placed it on a shelf where it gets a small amount of ambient light every day. The rest they did themselves. You just have to remember to check on them and keep the humidity quite high because they can dry out really fast. They seemed stuck as gametophytes for months. I just noticed the start of these sporophytes the other day.