Grasses That Feign Infestation

7391311290_d280e7c6ae_b.jpg

Given the option, most of us would rather avoid a salad riddled with insects or an apple chock full of worms. Much as we prefer to avoid insect-infested fruits and vegetables, so too do many herbivores. Some plants seem to be taking advantage of this. In response to strong herbivore pressure, some plant species have evolved insect mimicry. One such case involves grass and aphids. 

Paspalum paspaloides can be found growing in tropical regions around the globe. In many ways they are similar to other C4 grasses. When they flower, however, one may notice something interesting. All of the flowers appear to be covered in aphids. Close inspection would reveal that this is not the case. Those clusters of dark specks swaying the breeze are simply the numerous dark anthers of the inflorescence. This has led some to hypothesize that these plants may be mimicking an aphid infestation.

This observation begs the question: "what benefit is there in mimicking aphids?" There are two major hypotheses that have been proposed in order to explain this phenomenon. The first is defense against herbivory. As stated above, herbivores often avoid plant material that has been infested with insects. Aside from any potential palatability issues, large populations of insect pests can signal a decrease in the nutritional value of a potential food source. Why waste time eating something that is already being eaten? Evidence in support of this hypothesis has come from other systems. A wide array of herbivores, both mammalian and insect, have been shown to avoid aphid-infested plant material.

Paspalum_notatum.jpg

The second hypothesis is one of avoiding future infestations. Aphids are clonal organisms with a short generation time. It does not take long for a few aphids to become many, and many to become an infestation. As such, aphids looking for a new plant to colonize habitually avoid plants that already have aphids on them. It could very well be that such aphid mimicry is a means by which the grass keeps actual aphids at bay.

If this is a form of true mimicry then the question is not a matter of which hypothesis but the relative influence of each. It seems that it very well could be driven by a mixture of both strategies. Still, all of this is speculative until actual experiments are carried out. Those who originally put forth these ideas have identified similar potential mimicry systems in other plants as well. The idea is ripe for the testing!

Photo Credits: [1]

Further Reading: [1] [2] [3]