A New Look at a Common Bladderwort

image.jpg

It is so often that common species are overshadowed by something more exotic. Indeed, we know more about some of the rarest plants on earth than we do about species growing in our own back yards. Every once in a while researchers break this pattern and sometimes this yields some amazing results. Nowhere has this been better illustrated in recent years than on the humped bladderwort, Utricularia gibba. 

This wonderful little carnivore can be found growing in shallow waters all over the world. Like all Utricularia, it uses tiny little bladders to capture its even tinier prey. Despite its diminutive size, U. gibba is nonetheless a very derived species. For all of its wonderful physical attributes, the real adventure begins at the microscopic level. As it turns out, U. gibba has some amazing genetic attributes that are shining light on some incredible evolutionary mechanisms. 

When researchers from the University at Buffalo, Universitat de Barcelona in Spain, and LANGEBIO in Mexico decided to sequence the genome of this plant, what they found was quite startling. For a rather complex little plant, the genome of U. gibba is incredibly small. What the researchers found is that U. gibba appears to be very efficient with its DNA. Let's back up for a moment and consider this fact. 

image.jpg

The genomes of most multicellular organisms contain both coding and non-coding DNA. For decades researchers have gone back and forth on how important non-coding DNA is. They do not code for any protein sequences but they may play a role in things like transcription and translation. For a long time this non-coding DNA has been referred to as junk DNA. 

This is where things get interesting. Sequencing of the U. gibba genome revealed that only 3% of its genome consisted of non-coding or junk DNA. For some reason the U. gibba lineage has managed to delete most of it. To put things in perspective, the human genome is comprised of roughly 98% non-coding or junk DNA. Despite its rather small and efficient genome, U. gibba nonetheless has more genes than plants with larger genomes. This may seem confusing but think of it this way, whereas U. gibba has a smaller overall genetic code, it is comprised of more genes that code for things like digestive enzymes (needed for digesting prey) and cell walls (needed to keep water out) than plants with more overall genetic code such as grapes or Arabidopsis. 

As one author put it, this tiny ubiquitous plant has revealed "a jewel box full of evolutionary treasures." It is a species many of us have encountered time and again at the local fishing hole or in your favorite swimming pond. Time and again we pass by the obvious. We overlook those organisms that are most familiar to us. We do so at the cost of so much knowledge. It would seem that the proverbial "Old Dog" has plenty of tricks to teach us. 

Photo Credit: Kevin Thiele (http://bit.ly/1Flouqd) and Reinaldo Aguilar (http://bit.ly/1B6mnHN)

Further Reading:

http://www.nature.com/nature/journal/v498/n7452/full/nature12132.html

http://mbe.oxfordjournals.org/content/early/2015/01/31/molbev.msv020

http://plants.usda.gov/core/profile?symbol=UTGI