The Curious Case of the Yellowwood Tree

17975570426_efd4213146_o.jpg

The immense beauty and grace of the yellowwood (Cladrastis kentukea) is inversely proportional to its abundance. This unique legume is endemic to the eastern United States and enjoys a strangely patchy distribution. Its ability to perform well when planted far outside of its natural range only deepens the mystery of the yellowwood.

The natural range of the yellowwood leaves a lot of room for speculation. It hits its highest abundances in the Appalachian and Ozark highlands where it tends to grow on shaded slopes in calcareous soils. Scattered populations can be found as far west as Oklahoma and as far north as southern Indiana but nowhere is this tree considered a common component of the flora.

Cladrastis_kentukea_range_map_1.png

Though the nature of its oddball distribution pattern is open for plenty of speculation, it is likely that its current status is the result of repeated glaciation events and a dash of stochasticity. The presence of multiple Cladrastis species in China and Japan and only one here in North America is a pattern shared by multiple taxa that once grew throughout each continent. A combination of geography, topography, and repeated glaciation events has since fragmented the ranges of many genera and perhaps Cladrastis is yet another example.

The fact that yellowwood seems to do quite well as a specimen tree well outside of its natural range says to me that this species was probably once far more wide spread in North America than it was today. It may have been pushed south by the ebb and flow of the Laurentide Ice Sheet and, due to the stochastic nuances of seed dispersal, never had a chance to recolonize the ground it had lost. Again, this is all open to speculation as this point.

17822773749_905eb83e49_o.jpg

Despite being a member of the pea family, yellowwood is not a nitrogen fixer. It does not produce nodules on its roots that house rhizobium. As such, this species may be more restricted by soil type than other legumes. Perhaps its inability to fix nitrogen is part of the reason it tends to favor richer soils. It may also have played a part in its failure to recolonize land scraped clean by the glaciers.

Yellowwood's rarity in nature only makes finding this tree all the more special. It truly is a site to behold. It isn't a large tree by any standards but what it lacks in height it makes up for in looks. Its multi-branched trunk exhibits smooth, gray bark reminiscent of beech trees. Each limb is decked out in large, compound leaves that turn bright yellow in autumn.

When mature, which can take upwards of ten years, yellowwood produces copious amounts of pendulous inflorescences. Each inflorescence sports bright white flowers with a dash of yellow on the petals. It doesn't appear that any formal pollination work has been done on this tree but surely bees and butterflies alike visit the blooms. The name yellowwood comes from the yellow coloration of its heartwood, which has been used to make furniture and gunstocks in the past.

Whether growing in the forest or in your landscape, yellowwood is one of the more stunning trees you will find in eastern North America. Its peculiar natural history only lends to its allure.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2]

Germinating a Seed After 32,000 Years

What you are looking at are plants that were grown from seeds buried in permafrost for nearly 32,000 years. The seeds were discovered on the banks of the Kolyma River in Siberia. The river is constantly eroding into the permafrost and uncovering frozen Pleistocene relics. Upon their discovery, researchers took the seeds and did the unthinkable - they grew them into adult plants. To date, this is the oldest resurrected plant material. 

The key to their extreme longevity lies in the permafrost. They were found inside the frozen burrow of an Arctic ground squirrel. The state of the burrow suggests that everything froze quite rapidly. As such, the seeds remained in a state of suspended animation for 32,000 years. This is not the first time viable plant materials have been recovered from Pleistocene permafrost. Spores, mosses, as well as seeds of other flowering plants have been rejuvenated to some degree in the past but none of these were grown to maturity. 

Using micropropagation techniques coupled with tissue cultures, researchers were able to grow and flower the 32,000 year old seeds. What they discovered was that these seeds belonged to a plant that can still be found in the Arctic today. It is a small species in the family Caryophyllaceae called Silene stenophylla. However, there were some interesting differences. 

As it turns out, the seeds taken from the burrow proved to be a phenotype quite
distinct from extant S. stenophylla populations. For instance, their flowers were thinner and less dissected than extant populations. Also, whereas the flowers of extant populations are all bisexual, individuals grown from the ancient seeds first produced only female flowers followed by fewer bisexual flowers towards the end of their blooming period.Though there are many possible reasons for this, it certainly hints at the different environmental parameters faced by this species through time. What's more, such findings allow us a unique window into the world of seed dormancy. Researchers are now looking at such cases to better inform how we can preserve seeds for longer periods of time. 

Photo Credit: Svetlana Yashinaa, Stanislav Gubin, Stanislav Maksimovich, Alexandra Yashina, Edith Gakhova, and David Gilichinsky

Further Reading: [1]